
Dra
ft

Regular
Expressions

Reg Dodds
Department of Computer Science
University of the Western Cape

rdodds@uwc.ac.za

c©2016 Reg Dodds

September 18, 2017

Dra
ft

2

Dra
ft

Chapter 1

Regular Expressions

REGULAR EXPRESSIONS are an easy way to tackle a variety of prob-
lems, especially those involving searching for, or mining for, infor-
mation in text files.

For example, a regular expression may be used in order to extract all
the words consisting only of lower case letters from the text of a book. A
regular expression can be constructed to find all the strings of four digits
in a web page. A regular expression can be applied look up any tag in a
web page and replace it with a different mark-up symbol, such as in the
process of converting a file in Rich text format (RTF) to its Hypertext mark
up language (HTML) equivalent.

1.1 Defining Regular Expressions

In order to use regular expressions it helps first to understand the rules
needed to form them. Regular expressions are a way of describing a subset
of strings that are built up out of an alphabet we will write as Σ, where Σ
may be a simple set, e.g. consisting only of zero and one, i.e., the set {0, 1}.

The set of all subsets that can be built from the set Σ = {0, 1}, i.e., its
superset P(Σ) = {{}, {0}, {1}, {0, 1}}. Many strings can be built from the
the alphabet Σ = {0, 1}, namely, the strings,

ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 1000, . . . ,

to name a few of them. This particular set is called the closure of the set
Σ = {0, 1}, and is written as Σ∗ or {0, 1}∗. Regular expressions can be used
to define subsets of Σ∗, such as all the even, or odd binary numbers, all

3

Dra
ft

4 1 Regular Expressions

the numbers with odd parity, all those elements, consisting only of ones or
only of zeros, all the numbers with an odd or even number of digits.

Of all the possible sets of strings that we can build from Σ the smallest
one is the empty set ∅. So, the first rule to make a regular expression follows.

1. The empty set ∅ is a regular expression.

Of course, if we build all possible strings from any set, then it we uncom-
fortably have to make provision for the construction an empty string, that
is written as ε,1 giving the second rule for producing regular expressions.

2. The empty string ε is a regular expression.

Since of all the possible strings that we can produce from the alphabet Σ,
any single element of Σ may also be regarded as a regular expression—giving
us the third rule.

3. If x ∈ Σ then x is a regular expression.

Given Σ = {0, 1}, and the first three rules it follows that ∅, ε, 0, and 1 can
all be regular expressions. These are the building blocks for building all the
other regular expressions from the alphabet Σ = {0, 1}.

The following rules describe how regular expressions can be built from
other regular expressions. The strings from a set built by a regular expres-
sion may be collected into one set, they may concatenated, or any multiple
of copies of them may be combined into regular sets. The fourth rule de-
scribes the union of two sets formed by regular expressions

4. If R1 and R2 are two regular expressions, the set formed by their
union (R1 ∪R2) is a regular expression.

The fifth rule describes how new sets can be formed by concatenating the
strings formed by different regular expressions.

5. If R1 and R2 are two regular expressions, the set formed by their
concatenation (R1 ◦R2) is a regular expression.

Finally, the sixth rule describes how multiple concatenations of the same
regular expression may be used to form a regular expression.

6. The set formed by (R∗), where R is a regular expression and (R∗)
represents strings formed by a regular expression concatenated any multi-
ple of times to itself, including zero multiples, is a regular expression.

1Programmers are usually not overly surprised by a statement such as s = "", which
assigns an empty string to the variable s.

Dra
ft

Defining Regular Expressions 5

The ∗ in the regular expression R∗ indicates what is known as the closure
of the regular expression R. This closure is the set {ε,R,R2, . . .}.2

In summary a regular expression is:

1. the empty set ∅,

2. the empty string ε,

3. x if x ∈ Σ,

4. the union (R1 ∪R2), where R1 and R2 are two regular expres-
sions,

5. the concatenation (R1 ◦ R2), where R1 and R2 are two regular
expressions, or

6. the closure (R∗) of a regular expression R.

Shorthand for R1 ◦ R2 is R1R2, and instead of using ∪ for union a + or a |
is used, so that R1 ∪ R2 = R1 + R2 = R1|R2. Parentheses are used to alter
the order of operations when the priority rules do not give the intended
meaning. They may be dropped when the order of operations is according
to priority.

The priority rules are simple. (1) An expression inside parentheses is
done first, (2) then the closure operator, and (3) concatenation fol-
lows, and (4) union has the lowest priority. Two operators of the
same priority are executed from left to right, e.g. two concatena-
tions, or two unions.

Given that A, B, C, and D are regular expressions here are some examples
where the parentheses clarify the order of execution of the operators.

Examples

1. A ∪B ∪ C = ((A ∪B) ∪ C).

2. A ◦B ◦ C = ABC = ((A ◦B) ◦ C).

3. A ◦B∗ ◦ C = AB∗C = (((A ◦ (B∗)) ◦ C).

2Mathematically, this is written R∗ =
⋃∞

i=0 R
i = {ε} ∪R∪R2 ∪ . . ., where Ri is defined

as, R0 = {ε}, and Ri+1 = RiR, for i ∈ N, where N is the set of natural numbers {1, 2, 3, . . .}.

Dra
ft

6 1 Regular Expressions

4. A ∪B∗ ◦ C = (A ∪ ((B∗) ◦ C)).

5. A ∪B ◦ C ∪D = A ∪BC ∪D = ((A ∪ (B ◦ C)) ∪D).

6. (A ∪B) ◦ (C ∪D) = ((A ∪B) ◦ (C ∪D)).

Given that Ri is a regular expression for i ∈ N then the following are exam-
ples of regular expressions over the alphabet Σ = {a, b, c, d}

Examples

1. ε yields the set {ε}.

2. ∅ yields the set {} or ∅.

3. a is the set {a}.3

4. a ◦ b = ab is the set {ab}.

5. a ∪ b is the set {a, b}.

6. a ∪ b ◦ c is the set {a, bc}.

7. a ◦ b ∪ c ◦ d is the set {ab, cd}.

8. a ∪ b ◦ c ∪ d is the set {a, bc, d}.

9. a ∪ b ∪ c ◦ d is the set {a, b, cd}.

10. a∗ is the set {ε, a, aa, aaa, . . .}

11. a∗bcd is the set {bcd, abcd, aabcd, aaabcd, . . .}

12. a∗∅ = ∅a∗ = ∅ = {}.

13. ∅∗ = {ε} = ε.

14. R ∪ ∅ = ∅ ∪R = R, and R ◦ ε = ε ◦R = R.
But beware, R ∪ ε 6= R, because the union adds ε to R, when ε 6∈ R,
and R ◦ ∅ = ∅ ◦R = ∅.

15. ∅∅∗ = {} = ∅.

16. R∅∗ = R.
3The a is the regular expression, and {a} is the set that it represents. The literature and

these notes often conflate a and {a}, abc and {abc}, etc.

Dra
ft

Regular Expressions in programming 7

17. R∗ ∪ ∅∗ = R∗, but when ε 6∈ R, then R ∪ ∅∗ 6= R, ε has been unioned
to R.

18. R∅ = ∅R = ∅ = {}, i.e., R ◦ ∅ = ∅ ◦R = ∅.

19. ε∗ = ε.

1.2 Regular Expressions in programming

A reasonably full list of commands used when programming with regular
expressions is given in Section ??.

The meta-characters are used in commands are { } [] () ˆ $.
, | * + - \. We will describe some of their uses briefly. Most of the
following applies in almost every programming language or tool.

1. The asterisk * is used as the closure of a regular expression, e.g. a*
matches any of the empty string, a, aa, aaa, etc., greedily, i.e., as
much as possible is matched.

2. A plus + is used as the closure of a regular expression that contains at
least one item, e.g. b+ matches any of b, bb, bbb, etc., greedily, i.e., as
much as possible is matched.

3. The caret ˆ matches the beginning of a string or line.

4. The dollar $ matches the end of a string or line.

5. The period or dot . matches any character excepting the newline char-
acter, e.g. the pattern ˆ.+$ matches all the characters of a non-empty
line, excepting the final newline character.

6. The braces { and } are used indicate a fixed number of repetitions, e.g.
c{0,} has the same meaning as c*, c{1,} has the same meaning as
c+, and c{2,4} will greedily match any of, cc, ccc, or cccc, and
c{3,3} will match only ccc.

7. The backslash escapes or overrides the meaning of the following char-
acter. In order to match a string of exactly three plusses the pattern
\\+{3,3} or the pattern \\+\\+\\+ or can be used. The backslash
used in combination with certain letters or digits gives that character
a special meaning, e.g. \d will match any digit.

Dra
ft

8 1 Regular Expressions

8. The parentheses (and) are used to group regular expressions,
e.g. (ab*c) will greedily match any of ac, abc, abbc, abbbc, etc.
The groups that are matched are numbered from 1. The number of the
group is determined by its first left parenthesis. If any replacement is
going to be done, then group 1 is denoted by \1, and group 2 is de-
noted by \2, etc. This can be very useful for manipulating text. e.g. in
the editor vi to change all dates in the format mm/dd/yyyy to dates
in the form yyyy-mm-dd the following search and replace command
can be used, %s:\(\d\d\)/\(\d\d\)/\(\d\d\d\d\):\3-\2-\1:g+.
This alters the dates 11/12/1982 and 20/05/1987 to 1982-12-11,
and 1987-05-20.

9. Downstroke is used to separate alternatives in a pattern,
e.g. the pattern a|bc|efg matches one of a or bc or efg.

10. Brackets [and] are used to define classes, e.g. [aeiou] defines a
class that contains the vowels. Inside brackets, minus - indicates a
range when it occurs between two characters, such as [0-9], which
matches any digit and has the same meaning as \d. The class of all
the lowercase letters is given by the pattern [a-z]. The class [A-Z]
matches any uppercase letter and [a-zA-Z] matches all the letters.
The caret negates a class when it is the first character of a class, e.g.
[ˆ0-9] matches anything that is not a digit.

Some regular expression engines support named classes in the form
of [[:name:]], where name is one of alnum, alpha, ascii, blank,
cntrl, digit, graph, lower, print, punct, space, upper, and
xdigit. These are useful when accented letters or non-roman apha-
bets are required. Note that [[:blank:]] matches only the space—
ASCII = 32—and the tab—ASCII = 9—characters, whereas the class
[[:space:]] and \s are both the same as [\t\n\r\f\v].

1.3 Regular Expressions in the command line inter-
face

1.4 Regular Expressions in Python

When regular

Dra
ft

Regular Expressions in Java 9

1.5 Regular Expressions in Java

1.6 Regular Expressions in the vim Editor

In our notation we

Username

Username with at least four and at most sixteen letters, digits underscores,
or hyphens.
ˆ[a-zA-Z0-9_-]{4,16}$
ˆ Start of the line
[a-zA-Z0-9_-] Match letters, digits, underscore and hyphen
{4,16} Match at least 4 and at most 16 characters
$ End of the line
⇒ See the explanation and example here

Password

A password that contains at least two digits, one lowercase and one upper-
case letter.
((?=.*\d.*\d)(?=.*[a-z])(?=.*[A-Z]).{4,16})
(Start of group
(?=.*d.*d) Must contain at least two decimal digits
(?=.*[a-z]) Must contain one lowercase character
(?=.*[A-Z]) Must contain one uppercase character
.{4,16} Match anything with prior condition checking

with a length at least 4 and atmost 16 characters
) End of group

Colour Code in Hexadecimal or Decimal

Colour code in the form of a hash followed by six hexadecimals or three
comma separated one to three digit numbers, e.g. #f0ff8e, #FACE33 or
1,12,123. ˆ#([0-9a-fA-F]{6}\|\d{1,3},\d{1,3},\d{1,3}\$

Dra
ft

10 1 Regular Expressions

ˆ start of the line
must start with
(start of group 1
[0-9a-fA-F]{6} hex string of length of 6
| or
\d{1,3} decimal string of length 1-3
,\d{1,3} , decimal string of length 1-3
,\d{1,3} , decimal string of length 1-3
) end of group 1
$ end of the line

A floating point number

There are various definitions of floating point numbers. It is easy to write
regular expressions that match floating point numbers. Consider the defi-
nition.

A floating point number may have an optional plus + or minus - sign fol-
lowed by the whole part of at least one and not more than 15 digits, possess a
compulsory point ., and this is followed by an optional fraction in the form of a
string of up to 15 digits, and an optional exponent consisting of upper case E or
lower case e followed by an optional sign of plus + or minus - which in turn is
followed by one to three digits.

[+-]?\d{1,15}[.]\d{,15}([Ee][+-]?\d{1,3})?

This matches the numbers
+123.456789E+10,
123.456789E123,
123.E+4,
123.E4,
1230000.,
-123.45678, and
-123.456789E+01,

but does not match
+.456789E+10,
123456789E123,
123.E,
-12345678, and
-123.+01,

.

Dra
ft

Exercises 11

Email

Image File Extension

IP Address

Time Format

Time in 24-Hour Format

Date Format (dd/mm/yyyy)

HTML Tag

HTML links

HTML A Tag

Extract HTML

1.7 Exercises

1.7.1 Exercises for ??

Let Σ = {0, 1}. Give regular expressions for the following subsets of Σ∗.

1. the even binary numbers,

2. the odd binary numbers,

3. all the numbers with odd parity,

4. all the numbers with odd parity,

5. elements consisting only of ones or only of zeros,

6. elements consisting only of zeros,

7. elements with an odd number of digits,

8. elements with an even number of digits,

9. elements with an number of digits that is divisible by three.

Quick Reference

Dra
ft

12 1 Regular Expressions

Regular Expressions
Literal Characters

\n Newline, \x0A
\r Carriage return, \x0D
\t Tab, \x09
\v Vertical tab, \x09
\f Form feed, \x0C
\a Alarm, alert, bell, or beep, \x07
\e Escape, \x1B
\ddd ASCII character expressed in octal ddd, e.g. \007
\xdd ASCII character expressed in hexadecimal dd, e.g. \x1B
\cA The control character ˆA, e.g. \cJ is equivalent to \n

and \cI is equivalent to \t
Character Classes

[. . .] A character between the brackets
[ˆ. . .] A character not between the brackets
. Any character except newline, same as [ˆ\n]
\d A digit, same as [0-9] or [[:digit:]]
\D Not a digit, same as [ˆ0-9]or [ˆ[:digit:]]
\w A word character, same as [a-zA-Z0-9_] or [[:alnum:]_]
\W A non-word character, same as

[ˆa-zA-Z0-9_] or [ˆ[:alnum:]_]
\s A whitespace character, same as

[\t\n\r\f\v] or [[:space:]]
\S A non-whitespace, same as

[ˆ\t\n\r\f\v] or [ˆ[:space:]]
[\b] A backspace character, b matches a word boundary
posix
class

Use as [[:alnum:]]: alnum, alpha, ascii, blank, cntrl,
digit, graph, lower, print, punct, space, upper,
xdigit

Replacement
\ Turn off the special meaning of the following character
\n Print text matched by nth, 1≤n≤9, pattern,

matched by \(and \)
& Reuse matched text as part of the replacement pattern
∼ Reuse matched text in the current replacement pattern
% Reuse the previous replacement pattern in the current replace-

ment pattern
\l Change first character of replacement pattern to lowercase
\L Change entire replacement pattern to lowercase
\u Change first character of replacement to uppercase
\U Change entire replacement pattern to uppercase

Dra
ft

Exercises 13

Repetition
{n} Match n times
{n,m} Match n–m times
{n,} Match at least n times
? Ignore or match once, same as {0,1}
+ Match at least once, same as {1,}.
* Match zero or more times, same as {0,}
{}? Match as few times as possible, i.e., ungreedily—exclude char-

acters from next match
?? Match as few times as possible, i.e., ungreedily
+? Match as few times as possible, i.e., ungreedily
*? Match as few times as possible, i.e., ungreedily, e.g.

ˆ(.*?)\s*$, grouped expression excludes trailing spaces.
Options

g Match everything, do not stop after first match.
i Ignore case.
m Match multiple lines, i.e., ˆ and $ match internal \n.
s Treat string as a line, i.e., ˆ and $ ignore \n, but . matches it.
x Insert comments or whitespace.

Extended Regular Expression
(?#...) Comment, ignore “...”.
(?:...) Matches but does not return “...”
(?=...) Matches if expression matches “...” next
(?!...) Matches if expression idoes notmatch “...” next
(?imsx) Change matching options during matching.

Grouping
(...) Group items into a unit, e.g. to use with *, +, ?, |, etc.
| Alternation. Match one of the alternatives.
\n Match characters of group n.

Anchors
\ˆ Match beginning of string or line.
$ Match end of string or line
\b Match a word boundary, i.e., match all between a \w character

and a \W character
\B Match a position that is not a word boundary
[\b] Matches backspace, \b matches a word boundary

Dra
ft

14 1 Regular Expressions

The Posix Character Classes

Class Meaning
alnum Letter or digit.
alpha Letter.
blank Space or tab only.
cntrl Control character.
digit Decimal digit.
graph Printing character, excluding space.
lower Lowercase letter.
print Printing character, including space.
punct Printing character, excluding letters and digits.
space Whitespace.
upper Uppercase letter.
xdigit Hexadecimal digit.

