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\When natural inclination develops into a passionate desie, one advances towards his
goal in seven-league boots."

Nikola Tesla



Abstract

The SASL project is in the process of developing a machine traslation system that can
translate fully- edged phrases between SASL and English irreal-time. To-date, several
systems have been developed by the project focusing on fatiexpression, hand shape,
hand motion, hand orientation and hand location recognition and estimation. Achmed
developed a highly accurate upper body pose recognition andstimation system. The
system is capable of recognizing and estimating the locatio of the arms from a two-
dimensional video captured from a monocular view at an accuacy of 88%. The system
operates at well below real-time speeds. This research aints investigate the use of op-
timizations and parallel processing techniques using the ODA framework on Achmed's
algorithm to achieve real-time upper body pose recognitiorand estimation. A detailed
analysis of Achmed's algorithm identi ed potential improv ements to the algorithm. A
re- implementation of Achmed's algorithm on the CUDA framework, coupled with these
improvements culminated in an enhanced upper body pose regaition and estimation
system that operates in real-time with an increased accurac
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Chapter 1

Introduction

1.1 Background and Motivation

E ective communication is essential for daily interaction, whether it is formal or in-
formal. Examples are buying groceries and bus tickets or comunicating ideas in the
workplace. Over six hundred thousand Deaf South Africans struggle to communicate
with the hearing [55].

Hearing individuals are typically uneducated or unfamiliar with sign languages and are
partially or completely unable to communicate with the Deaf. A common misconception
amongst the hearing is that Sign Language is a universal langage through which all
Deaf individuals communicate. The fact is that various signlanguages exist, with most
countries having their own unigue sign languaged9, 30]. There can be as much diversity
in sign languages as there are in spoken languages. Anotherisnonception is that
what is perceived to be the universal Sign Language is the sigd equivalent of spoken
languages 1, 29]. Research has shown that sign languages are fully edged tguages
on their own, with an entirely di erent set of grammatical an d syntactic structure to

spoken languagesd5]. An example is British Sign Language, which is entirely di erent
from English. This has also led to the incorrect assumption hat Deaf individuals can

read and write in spoken languages.

In South Africa the o cial language for the Deaf is South Afri can Sign Language (SASL)
[55]. The Deaf in South Africa have limited access to educationhservices and socio-
economic privileges compared to hearing people. This caudesegregation between the
Deaf and hearing in society. The Deaf in South Africa su er from poverty and typically

cannot a ord education [29]. Skilled interpreters can be hired as a medium between

1The social group that are completely unable to communicate i n spoken languages.
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Deaf and hearing individuals Bb5]. However, their services tend to be costly and scarce.
The number of interpreters relative to that of Deaf individu als in South Africa is very
small [30, 40]. In some cases privacy can be a problem when using interprets. A Deaf
person might prefer doctor patient con dentiality in priva te consultations and not be
comfortable with an interpreter.

The \Integration of Signed and Verbal Communication: South African Sign Language
Recognition and Animation" project [29] at the University of the Western Cape, also
called the SASL project, aims to develop a real-time machindranslation system that
can translate between English and SASL. The system involvesvo distinct procedures:
translating from SASL to English; and translating from English to SASL. The pro-
cedure relevant to this research is the translation of SASL ¢ English, which involves
the extraction of semantic information from a video that consists of a Deaf individual
communicating in SASL.

Research has shown that ve parameters characterize sign teguage gestures34, 51].
These parameters are facial expressions, hand shape, handotion, hand orientation
and hand location. The SASL project has conducted researchnto the recognition of
these ve parameters from SASL videos. Whitehill developeda robust facial expression
recognition system [L04]. Li developed a hand shape estimation system5fl]. Naidoo
[61] and Rajah [72] developed hand motion recognition systems. Achmed deveghed a
hand location recognition system, also referred to as uppebody pose recognition and
estimation in the literature [ 1]. Achmed focused on achieving high recognition accuracy
using a computationally intensive algorithm. The aim of his part of the project was to
successfully estimate the positions of the arms and jointsni 3D using the 3D humanoid
avatar developed by Van Wyk [10(. The system was solely focused on achieving a
high-accuracy recognition methodology. It is known that the system runs slower than
real-time speed. This research aims to re-implement and opnize the system using
parallel processing techniques such that it achieves both &igh accuracy and real-time
performance.

Real-time performance is key to the interactive communicaton of the machine transla-
tion system. The processing speed of the system a ects the sponse time of the system
to the user. A higher processing speed helps present a resuti the user faster. Hence,
a better response time. Achmed 1], Li [5]1], Naidoo [61] and Rajah [72] investigated
methods of improving the response time by selectively dropjmg frames possibly at the
expense of accuracy. To date, a trade-0 was made between thesponse time and the
accuracy in terms of the number of frames processed. This rearch aims to eliminate
this trade-o .
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1.2

Research Question

The following research question can be speci ed based on thprevious section: \Can

optimization and parallel processing techniques on the CUB framework be applied

to Achmed's methodology to achieve real-time performance taa sustained or improved

estimation accuracy?"

1.3

1.4

Research Objectives

Conduct an analysis of Achmed's algorithm to identify which components require
optimization.

. Re-implement the identi ed components using optimization or alternative tech-

nigues.

Re-implement the entire system using parallel processmtechniques on the Graph-
ics Processing Unit (GPU).

Conduct testing to determine whether real-time performance has been achieved.

Conduct testing to determine whether the accuracy has bee sustained or im-
proved.

Premises

It is assumed that the sign language videos to be used in traing and testing will
consist of the entire upper body of the signer facing the web amera. During a
sign language conversation, breaking eye contact with theigner is considered rude
and disrespectful b5, 83]. This assumption is therefore justi ed.

It is assumed that the signer will stand in front of an arbitrary background and
not require any special equipment such as data gloves or calced markers. This
is a requirement of the SASL project to attempt to provide the most natural feel
to the system.
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1.5 Thesis Outline

The remainder of the thesis is arranged as follows:

Chapter 2. Pose Recognition and Estimationn This chapter reviews existing literature
on pose recognition and estimation. It explores the variousapproaches and algorithms
used to attain varying accuracies. The strengths and weakrgses of the various ap-
proaches are discussed.

Chapter 3: Compute Uni ed Device Architecture: This chapter reviews studies which
compare the processing speed of applications as implemedt®n the CPU and GPU.
The studies rst deal with pose recognition and estimation gpplications in the literature
as it is the most relevant to this research. It is followed by mage processing applications
and general-purpose processing applications.

Chapter 4: Image Processing in Learning-Based Pose Recognition and Esation :
This chapter discusses the components that can form part oftie learning-based system
in detail. This discussion forms the basis of the optimizaton process used in subsequent
chapters.

Chapter 5: Design and Implementation of the Faster Upper Body Pose Regaition and
Estimation System: The chapter discusses the proposed upper body pose recotoin
and estimation system. It discusses the analysis, optimiZégon and re-implementation
of Achmed's system to produce the faster upper body pose regaition and estimation
system.

Chapter 6: Experimental Results and Analysis This chapter discusses the testing
carried out to determine whether the proposed system achiess real-time speed and a
sustained or improved accuracy.

Chapter 7: Conclusion: This chapter concludes the thesis, highlights the contrilutions
made towards the research and provides directions for futur work.



Chapter 2

Pose Recognition and Estimation

The majority of pose recognition and estimation systems regire additional equipment

to be pre-attached to the person's body $1]. Examples include data gloves, data suits
and coloured markers. The use of such equipment makes thesgstems unnatural,

conspicuous, expensive and impractical. The SASL projectims to avoid the use of
such equipment and provide a natural feel to the machine traslation system.

The project has therefore tended towards newer approacheshat make use of computer

vision, image processing and machine learning which can alinate the pre-requisite

of attached markers. These approaches can be categorized &dlows: model-based,

example-based and learning-based approaches. Where pdssithe results, accuracy,

strengths and weaknesses of the various algorithms that ha/been used to perform pose
recognition and estimation are mentioned.

The rest of the chapter is organized as follows: Sectio2.1 de nes pose recognition
and estimation within the scope of this research; Section2.2 to 2.4 discuss the various
systems according to the approach used; a summary of the chagr follows.

2.1 De nition

Pose recognition and estimation is de ned as the process okcognizing and estimating
the position and orientation of a human body in a single frameor over multiple frames
[57]. In the case of multiple frames, the term tracking is used.

The objective of pose recognition and estimation is to detamine the set of angles for
each degree of freedom (DOF) of the joints in the human body mdel with respect to its
local or relative coordinate system. Data captured from a sigle camera is represented
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in 2D with respect to a world coordinate system and later estinated in 3D using a 3D
human body model with respect to its local coordinate system

2.2 Model-Based Approaches

Model-based approaches assume an explicitly known paranmét human body model and
estimate the pose by comparing the test image on the known imge positions for ev-
ery body part [2, 14, 16]. Angles and lengths amongst the body parts are commonly
used parameters for these models. These approaches oftenveahe problem of a high
computational cost due to their high con guration complexity. In some cases the com-
putational cost can be exponential. The computational costcan be reduced by limiting
the number of DOF and using symmetry. Top-down and bottom-up models are the two
categories used in model-based pose estimation and are eapled in the following two
subsections.

2.2.1 Top-Down Methods

Top-down methods execute a brute-force match on the performd pose by comparing the
high-dimensional pose space, kinematic structure and coesponding constraints directly
to the model [43]. A complex cost function measures the similarity of the pralicted pose
to the actual observed pose. The aim of the cost function is tond a match based on

the optimal pose hypotheses that minimize the cost functionbecause it is exponential
relative to time.

Most top-down methods use an initialization procedure that determines the initial pose
to estimate the next frame. To achieve accurate results theyminimize projection errors
of kinematic models by using numerical optimization B9], generating a large number
of pose hypotheses4g] and su ciently ne sampling. Probability sampling uses th e
probability distribution to search entire body con gurati ons. There are a number of
di erent probability sampling techniques used. One exampk is Markov Chain Monte

Carlo (MCMC). Human body models are roughly represented by ink-joint models. This

is composed of 2D/3D geometric primitives such as cylinderand rectangles that are
tted to measure similarity [ 3§.

Taylor [ 94] investigated the top-down method by assuming that the coresponding points
between the articulated object and the model are known. Anoher assumption made
was that the relative lengths of each segment in the model ar&nown. The relationship
between the points in space and the projections onto the artiulated object can be
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Figure 2.1: The tracking of multiple indistinguishable body parts by MacCormick
and Blake's system b3].

modelled as a scaled orthogonal projectionl] 94].The resulting geometric constraints
were used to estimate the performed pose. The testing procede and results of Taylor's
work are not clear from the literature.

Parameswaran and Chellappa's§7] research also used geometric constraints to estimate
the pose of an individual. The isometric approximation is ugd by assuming that the
body part proportions of all humans are approximately the sane. Another assumption
made in their research was that the amount of torso twist is ngligible such that the
distance between the shoulder joints are xed. The head orietation is computed allow-
ing the epipolar geometry of the image to be recovered, thus etermining the 3D joint
positions. Synthetic and real people were used to test the gpoach. Explicit results are
not given, but the method was found to have poor accuracy whernested on real people
compared to synthetically generated humans. This was attibuted to the reduction in
the de nition of shoulders, hips and other joints of real humans by their clothes.

MacCormick and Blake's research resulted in the ability to track multiple indistinguish-
able body parts using a probabilistic exclusion principle §3]. This prevents image data
from contributing to similar hypotheses for two or more body parts. They also proposed
an e cient sampling method to improve the 3D-joint-positio n estimation accuracy. A
partition sampling algorithm that uses particle Iters wit h a simple wire-frame model
was used. The algorithm reduces the computational cost of dra dimensions and is in-
sensitive to background noise. This divides the wire-framemodel into constituent body
parts that can be determined individually. The test procedure and accuracy results are
unclear from the literature. Figure 2.1 illustrates the results visually.

2.2.2 Bottom-Up Methods

Bottom-up methods do not use the whole body model to t the observed pose 33.
Instead they t constituent body part models, which are represented by cylinders, rect-
angles or feature points and use geometric constraints be®en the parts. The time
complexity is much lower than that of the top-down approach. The model contains a
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Figure 2.2: The grouping of two legs by Srinivasan and Shi's system90].

list of body parts that are rst identi ed and then pruned. Ge ometric constraints are
used as a guide to assemble the full body pose that ts the mode

Srinivasan and Shi proposed a bottom-up shape parsing metlibthat contains more
complete partial body parts than previous bottom-up parsing methods PQ]. Multiple
image segmentations are parsed at each level to enable a rddiuinitialization. The
research is novel as it combines more than one body part and eats it as a bigger body
part. The use of larger body parts has limitations such as itsuse of a xed bottom-up
parsing method that always moves from the legs upward. They dscribe their results as
qualitatively good, but quantitatively poor. This means th at the system is generally able
to recognize the overall pose, but the error between the actal and estimated locations
of constituent body parts is high. The test procedure and reslts are unclear from the
literature, but Figure 2.2illustrates the grouping of two legs.

lo e and Forsyth proposed that a human can be located in an imae by nding candidate
body segments and grouping the segments according to kinertia properties [41]. They
state that pruning the search for body segments produces an @ent way of nding
possible body parts. A probabilistic framework is used on tke body parts located to limit
the number of possible assemblies to more closely resemblerhans. The test procedure
consists of 120 positive images and 86 negative images. Theesults show a 10% false
positive rate and 49% false negative rate. The high false negive rate is attributed to
the fact that the segment search is not able to nd all relevart body segments, which
negatively impacts the probabilistic framework. The grouping of segments according to
kinematic properties is found to be e ective, but requires abetter body segment model.

Mori et al. proposed an approach that e ciently assembles body parts ugg low-level
segmentation B0]. The body segment model is based on the Normalized Cuts algthm

[84], which produces candidates for limbs and torsos that are v ed by a variety of cues.

The constraints used to prune away incorrect body part combiations are symmetry,
scale, and the position and colour of clothing. For future waok they suggest using
arti cial intelligence (Al) heuristic search methods, such as the best- rst search method.
Furthermore, they suggest combining it with an example-bagd approach for a better
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Figure 2.3: The detection of constituent limb segments by Moriet al.'s system BQ].

B

result. The test procedure consists of 62 images of baseballayers from sports news
photographs. In 89% of the test images at least three of the ght limb segments are
correctly estimated. One example of their system in action $ illustrated in Figure 2.3.

2.2.3 Comparing Top-Down and Bottom-Up Methods

The two model-based approaches share a common challenge oiftialization. The top-
down approach requires suitable initialization to minimize projection errors of kinematic
models, either by using numerical methods§9] or by generating a large number of pose
hypotheses 48]. This helps to produce accurate results and reduce the seein time.
However, it can easily be trapped into local minima.

Bottom-up approaches require strict initialization of a particular body part, otherwise
a xed parsing method is used such as the work done by90]. The bottom-up approach
breaks up the human body into its constituent parts to e cien tly handle its high di-
mensionality. Search space is signi cantly reduced and a grater number of poses can be
recognized because of the low storage requirementg. The bottom-up approach does
not easily converge to local minima and is generally less coputationally intensive, but
achieves a very poor accuracy when body part detectors fail.

Recent attempts have been made to eliminate the weaknessesgcombine the strengths
of these two model-based approaches described in the nextlssection.

2.2.4 Combining Top-Down and Bottom-Up Methods

Hua et al. implemented a data-driven belief propagation Monte Carlo dgorithm, which
combines bottom-up and top-down visual cues within a rigoras statistical framework for
e cient Bayesian inference [38]. The test procedure and results are not explicitly stated.
Similarly, Lee and Cohen R8] proposed a data driven algorithm based on the Markov
Chain Monte Carlo (MCMC) method, which introduces proposal maps to e ciently
consolidate 3D pose candidates during the search. The testrpcedure and results are
also not explicitly stated. Zhang et al. performed a hybrid strategy that utilizes the top-
down MCMC method with a bottom-up deterministic search [106]. The test procedure
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Figure 2.4: Felzenswalb and Huttenlocher's body part detectors basedmcolour [26)].

contains 90 images of a person walking, 150 images of a persdancing and 100 images
of people performing random poses. The hybrid strategy ndscandidate poses with an
accuracy of 40% from the 340 test images.

Gupta et al. combined the top-down approach and bottom-up approach to ahkieve e -
cient pose estimation with self-occlusions using multiplecameras B3]. The approach is
based on 2D likelihoods and epipolar geometric constraintso search for likelihood re-
gions in 3D human body space. Their results indicate a 96% coect body part detection
rate when the joint error has a tolerance level of 50% of the b length.

Felzenszwalb and Huttenlocher also combined the top-downrad bottom-up model-based
approaches using a collection of body part detectors to matc a pose based on colour
[26]. The distance transformation is used to nd the global con guration of these body
parts and to optimize a cost function to determine the pose. This signi cantly reduces
the search complexity and has recently been used with beligiropagation for 3D body
tracking from multiple views [86]. However, it has not been found to have real-time
performance. The test procedure is not clear. However, accacy results are provided
visually in Figure 2.4.

2.3 Example-Based Approaches

Example-based approaches use a large database of pose andage features that are
trained with their corresponding pose or coordinates. Giva a query image, the database
returns one or more candidate poses with the closest matchinfeatures [L4, 26, 58].

Example-based approaches require a solution to perform coputationally expensive
gueries e ciently and accurately. Shakhnarovich et al. developed the parameter-
sensitive hashing algorithm that indexes approximate neagst neighbours in the database
that have similar features to the given query image 82]. Contour features are extracted
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Figure 2.5: 3D pose estimated by Shakhnarovictet al.'s system B2).

using edge direction histograms. The training set consisig of 150000 images, which
were rendered using a humanoid model in POSER. Only visual mlts are provided.
In Figure 2.5, the estimated pose is illustrated below the input image. Ahitsos and
Sclaro proposed similar work, but focused only on the estimation of hand poses §).

Mori and Malik [ 59] proposed an approach that stores a number of exemplar 2D wes

of a human gure, locates the joint positions and estimates he body con guration and

pose in 3D space. The stored images acquired from the CMU Main of Body Database
consists of individuals walking on a treadmill from multiple viewpoints. The stored
views are manually marked and labelled. A shape context matuing algorithm proposed
by Belongie et al. is used with a kinematic chain-based deformation model in afer to

match the query image to the stored examples1(]. Alternatively matching can also be

performed using an order structure algorithm proposed by Sllivan and Carlsson [92].

When a match occurs, the corresponding joint locations areransferred to the test shape.
The 3D body con guration and pose is estimated from the test fiape containing the
joint coordinates of the body, using Taylor's algorithm [94]. The system was tested using
a separate set of images of individuals performing the samections. Only visual results

are presented and show that their deformation-based apprazh performs well when the
query image contains vivid edges similar to the stored image This is especially true
around the arms. The joint location process fails when the edes are substantially
di erent.
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Figure 2.6: Micilotta's 3D pose estimation system [@)].

The Chamfer Distance algorithm has proved to be e ective in aldressing the edge match-
ing problem when applied to various shape comparison eldsMicilotta et al. conducted
research using the exact Chamfer Distance method5p]. Several human upper body
movements are stored as 3D body con gurations. The body mov@ents are distributed
into three databases, namely, hand position, silhouette ad edge map. An example of
each database that has the highest matching score is used t@construct and estimate
the pose based on the 3D con gurations. Their reconstructio method enables the edges
of the body parts to be de ned vividly. The Chamfer Distance Transformation is applied
to the matching process to identify the pose from the databas. Their test results are
displayed visually in Figure 2.6.

Cao et al. used the approximate Chamfer Distance to identify poses at digher process-
ing speed, but at a slightly reduced accuracy when compareddtusing the exact Chamfer
Distance [L5]. Eigen approximations are used to represent the distanceransform in low-

dimensional sub-space. They used a database containing 188 images with numerous
pose and angles of a 3D model. They compared their proposed ptementation to the

exact Chamfer Distance method and achieved better performace relative to time and

memory usage, but at the expense of accuracy.

Achmed [1] proposed a similar approach to $6] and [15] that stores a number of exemplar
2D views of the upper body, locates the corresponding joint psitions and estimates the
body con guration in 3D space. The proposed implementationis speci cally applied to
sign language recognition and translation. His results she that a good face detection
method is essential to increase the overall accuracy of theojnt positions. Canny edge
detection is used to enhance the edges before the Chamfer fdsce is approximated.
A 3D model, developed by Van Wyk [LO( using Blender, was used to generate a wide
range of example poses. The system was tested on 15 distincASL signs performed by
six individuals. The approach achieved an overall recognibn accuracy of 65%.



Chapter 2. Pose Recognition and Estimation 13

R HTTT?’;}\'&“T
R} T A K

Figure 2.7: Estimated 2D joint con gurations by Rosales and Sclaro [79].

2.4 Learning-Based Approaches

Learning-based approaches extract features from images i@ining poses, representing
them as vectors L4]. A trained regression function uses these vectors and précts the

pose by mapping the data of the image from feature space to pesspace. This approach
di ers considerably to the other two approaches as it does nbassume an explicit 3D
body model. A variety of advanced machine learning techniges exist, each suited
to speci c applications and environments. Learning-basedapproaches are particularly
appealing because of their potential to operate at high spais compared to the previous
two approaches, even as high as real-time. Some of the imageatures that are used
include concatenated coordinates of sampled boundary pois [31], Haar-like features
generated by AdaBoost 03 and multi-scale edge direction histograms 22]. A set of

example poses are trained to represent the relationship beteen the original image and
the generated pose using regression functions. Many regssn functions can be used,
including AdaBoost, BoostMap [6], Relevance Vector Machines (RVMs) and Support
Vector Machines (SVMs) [78§].

Rosales and Sclaro [f9] proposed work that recovers body poses from single images
using a non-linear supervised framework that maps image gibuettes to 2D body joint
con gurations. The mapping is done using a Specialized Mapimgs Architecture con-
taining a feedback matching function. The image silhouetts and 2D body joint con gu-
rations are acquired using 3D motion capture data. Trainingof the system is carried out
using the Expectation Maximization algorithm, which ts a G aussian Mixture Model to
cluster the 2D joint con gurations. Joint clusters are used to train an inverse mapping
between the image silhouette moments and 2D joint con guratons. The last step is
feedback matching, which reconstructs the joint con guration back to the visual cue
space using the most probable con guration. Visual resultsof their work are presented
in the literature. A sample of these results is provided in Fgure 2.7, which contains an
estimated pose below its corresponding image silhouette.

Agarwal and Triggs [2] proposed a tracking framework that does not assume an exjlit

body model and does not require the manual labelling of jointpositions. Instead it uses
sparse Bayesian non-linear regression of joint angles andtastogram of shape context
descriptors to extract silhouette shapes. Pose data is créaed using regression on both
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Figure 2.8: Pose estimation using a 3D POSER model by Agarwal and Triggsd].

linear and kernel-based functions using either ridge regision (RR), RVMs or SVMs.
The 3D modelling software, POSER, is used to render the datarito a pose animation
for a set of training and testing images. The test results indcate that the SVM classi er
achieves higher accuracies than the RVM and RR classi ers. @ average, the error in
the estimated joint angle over all joints was found to be 591 for the SVM, 5:95 for the
RR and 6:01 for the RVM. A sample of their visual results is illustrated i n Figure 2.8.

Chenet al. [17] proposed a learning-based pose recognition and estimaticsystem with

an Implicit Shape Model-based human detector, proposed by &ibe B#9]. The human

detector identi es and divides a human silhouette in an imag into segments using a
segmentation mask and canny edge detection. The RR and RVM nthods are used
to train and test the data. The testing was performed using 50frames of real human
images and 50 frames of humanoid images generated by POSERid stated that 20% of

poses are mis-estimated, although their criterion for detemining a correctly estimated

pose is not clear.

Grochow et al. proposed an inverse kinematics system that learns from pregusly seen
poses B2]. An objective function is maximized based on the suitabilty of a pose. The
Scaled Gaussian Process Latent Variable Model machine leming algorithm is used to
represent the probability distribution across a wide variety of poses. An advantage of
the system is that it can recognize unseen poses. However, $#5 similar to those in their
training set are preferred. Visual results of their estimaion technique are provided in
the literature, illustrated in Figure 2.9.

Achmed [1] proposed a learning-based pose recognition and estimatiosystem towards
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Figure 2.9: 3D humanoid superimposed on a walking human by Grochovet al. [32]

Figure 2.10: Upper body pose recognition and estimation by Achmed 1].

the sign language translation system of the SASL project. A ovel skin detection al-
gorithm was used. The Hue value of the HSV colour space was usdo represent the
skin as it is robust to dynamic lighting conditions. He proposed that the nose colour
is closely representative of the average colour of skin on ¢hhuman body. The pixels
surrounding the nose are represented as a histogram. Varigsuimage processing tech-
niques such a face detection, skin detection, background btraction and morphological
operations are used in the feature extraction process. Theesult is an image containing
only the moving skin pixels of the arms. A SVM uses the pixel déa obtained from the
resulting image to determine the location of the wrists. Thelocation of the wrists are
mapped on to a 3D human model, developed by Van Wyk10Q, using Blender. Chapter
5 explains Achmed's implementation in more detail. The systen was trained and tested
on 15 distinct SASL signs performed by six individuals. The gstem achieved an overall
estimation accuracy of 88%. Figure2.10illustrates a sample 3D estimated sign.

2.4.1 Combining Model-Based and Learning-Based Approache S

Thayananthan et al. [95] used Tipping and Faul's [97] bottom-up approach with a sparse
RVM regression classi er, similar to Sminchisescuet al. [89] and Agarwal and Triggs's
work [2]. The system matches a set of image shape templates againstd edge map of an
input image. The results are mapped on to state space in a on®-many con guration.
The results are visually represented in Figure2.11, illustrating an estimated pose below
its corresponding input image. It is stated that the system ahieves a high accuracy,
but is computationally intensive.

Jaeggliet al. used Locally Linear Embedding (LLE) dimensionality reduction to model
body poses in low-dimensional space4f]. A non-linear dynamic model is trained on
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Figure 2.11: 3D estimation of a human walking by Thayananthan et al. [95]

Figure 2.12: 3D model of a human dancing by Reret al. [74]

possible body poses. The training set consisted of 4000 dirent images of people walk-
ing. The RVM regression classi er made use of a Gaussian keeh Their estimation
accuracy is not provided. It is stated that ground-truth results will be provided in the

future.

Roberts et al. used probabilistic region templates to detect body parts 7). The like-
lihood ratio is trained using the appearance distribution o the background and fore-
ground. The result is compared to various dimensionalitiesby merging the top-down
and bottom-up approaches. Their results are encouraging wén visually inspected.

2.4.2 Combining Example-Based and Learning-Based Approac hes

These two approaches are generally combined by storing exgafar images and training
a model to e ciently search for a pose that is similar to the query image. Very little
research has been conducted on this approach.

Ren et al. proposed a system that can produce a 3D model of a human danainby
selecting local features from 2D silhouette images to estiate the body con gurations
and yaw orientation of the user [74]. Haar-like features are used to compute feature
vectors from silhouette images. The Haar-like features ardrained on a set of hashing
functions using AdaBoost. This allows for quick yaw estimaton based on the silhouette,
but it is limited due to its dependence on a domain-specic ddabase. The system
was tested using the top 20 matches in the hash. The visual redts of the rst ve is
illustrated in Figure 2.12
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2.5 Summary

This chapter presented a literature survey of pose recognibn and estimation systems.
The systems were categorized as using one of three approasheanodel-based, example-
based and learning-based approaches. The relative strerfgg and weaknesses of these
three approaches were mentioned. Combined approaches weedso discussed. Such
approaches were combinations of two of the three approaches

Achmed's work was also discussed. He produced both an exanepbased and learning-
based system, speci cally suited to recognizing and estining SASL poses. The learning-
based system achieved a much higher accuracy than the examgbased system.



Chapter 3

Compute Uni ed Device
Architecture

Real-time performance is crucial to the sign language trariation system proposed by
the SASL project due to the interactive nature of the system. The Graphics Processing
Unit (GPU) is a parallel computing device designed for graplics rendering. However, it
has evolved into a general-purpose processor capable of fmming computations faster
than a typical consumer Central Processing Unit (CPU) in the past decade §46]. This is
attributed to the architecture of the GPU which contains hun dreds of cores, capable of
running millions of threads concurrently. This is far greater than the number of threads
that a high-end CPU can initiate concurrently, typically be tween four and twelve.

This chapter begins by introducing the computing framework used in this research,
called Compute Uni ed Device Architecture (CUDA); see Section 3.1. This is followed
by a survey of studies which focus on investigating the use d€UDA to achieve increased
processing speeds. The studies have been categorized adiog their relevance to this
research in Section3.2, which begins by discussing those studies that have invegjated
the use of CUDA to achieve increased processing speeds in pogecognition and esti-
mation in Section 3.2.1 This is followed by less relevant studies involving other image
processing applications in Sectior8.2.2 Finally, of least relevance are studies involving
general-purpose computation applications in Sectior8.2.3 Where possible comparisons
of the processing speed of CPU and GPU implementations are pvided and discussed.
The purpose of this survey is to determine whether the use of ODA on the GPU can
be used to achieve superior performance to that of CPU implemntations.

The chapter is then concluded.

18



Chapter 3. Compute Uni ed Device Architecture 19

3.1 Compute Unied Device Architecture

Access to the GPU can be achieved using two types of framewosk namely, computing
frameworks and shading frameworks. Computing frameworks mvide the ability to

perform computations similar to a CPU, but with greater mult i-threading capabilities
on the GPU [46]. Shading frameworks make use of the shader units on the GPUot
create and manipulate 3D environments for use in applicatios such as games4].

Compute Uni ed Device Architecture (CUDA) is a propriety co mputing framework that
is designed for NVIDIA GPUs [65]. It provides an interface for general-purpose com-
puting on graphics processing units (GPGPU). The computations carried out by such
applications are no di erent to those carried out on the CPU except that they are able
to do so with greater multi-threading capabilities.

OpenCV is a state-of-the-art open source computer vision brary [8, 12]. It provides
many e cient image processing functions mainly aimed to acheve real-time computer
vision. Originally OpenCV performed computations using the CPU, but has recently
included support for the CUDA Application Programming Inte rface on the GPU. This
has the potential to signi cantly speed up the image procesig functions of OpenCV.
The CUDA framework is adopted for use in this research.

The GPU hardware consists of a collection of multiprocess@. The multiprocessors

execute a common program instruction on di erent data, which is known as the Single

Instruction Multiple Data architecture [ 46, 80]. Each processor core contained in a
multiprocessor communicates through the shared device meany. The software used by

the CUDA programming model extends the C/C++ programming la nguage.

The CUDA programmer controls the interface between the hostcode and the device
code, which run on the CPU and GPU respectively. Host code shdd contain the

sections of code that exhibit little or no data parallelism. The sections of code that
exhibit a rich amount of data parallelism should be implemeried in device code ¢4].

The device code is structured into kernels on the host illustated in Figure 3.1. The host
issues a kernel call to execute the device code that can be exged in a loop, be isolated
as a function and work independently on di erent data. This results in the conversion of
a sequential program to a data independent multi-threaded pogram in device memory.

These hardware thread contexts are grouped into warps and ecuted using the multi-
processors in a lock-step manner. Each warp contains 32 thaels and is controlled at
the hardware level. This limitation in the number of threads prevents the e cient use of
the GPU in image processing and other GPGPU programs that regire more threads.
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Figure 3.1: GPU Hardware Level [80]

Figure 3.1lillustrates the concept of blocks that can be used to overcom this limitation.
Each block can group as many as 1024 threads. Similar to blosk grids are used to
increase the limit to several thousand threads. Multiple waps are assigned to each block
or grid in a lock-step manner controlled by a near-zero overbad hardware scheduler to
hide the memory latencies and pipeline stalls by intelligetly switching between di erent
warps [46, 80Q].

The result of the computation performed on the device in pardlel is sent to the host
memory.

3.2 Related Work

This section discusses studies which focus on investigatinthe use of CUDA to achieve
increased processing speeds. They are categorized as inigegting the e ects of the

GPU in the following applications: pose recognition and esination applications, general
image processing applications and general-purpose compiton applications.
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3.2.1 Pose Recognition and Estimation on the GPU

Bayazit et al. created a human gesture recognition system and used the CUD#&ame-
work to speed up the processing speed of the AdaBoost machihearning algorithm [9].
The system makes use of the optical ow algorithm, face deteion algorithm and the
AdaBoost algorithm. It extracts motion features from the optical ow estimates. Face
detection is used to centre the user in each frame for normalation and the image is re-
sized to 30 40 pixels before it is sent to the classi er. The optical ow algorithm is run

in parallel with face detection on two separate CPU threads.Robust head movement is
sacri ced by not synchronizing the threads as a trade-o for increased processing speed.
The AdaBoost classi er uses a subset of the motion featuresni the resulting frame to
classify the performed gestures on the GPU.

A comparison was carried out to determine the di erence in pocessing speed of the
system when running AdaBoost on the CPU and GPU. The test sysem had an Intel
Xeon dual core CPU and an NVIDIA 9800 GX2 GPU. The data set that was used
consisted of seven gestures, namely: punch-left, punchgtt, sway, wave-left, wave-
right, waves and idle. The time taken for AdaBoost to classify 8192 weak learners
using the GPU implementation was, on average, 0.02 secondshile that of the CPU
implementation was, on average, 0.09 seconds. The GPU impieentation achieved an
average speed up factor of 4.5. Although the CPU utilizes twacores when running the
optical ow and face detection algorithms, it only runs AdaB oost on a single core. This
places the CPU at a disadvantage in this comparison when it isconsidered that the
GPU implementation of AdaBoost runs on multiple cores. It is stated that CUDA will
be used to port the face detection and optical ow algorithm to the GPU in future. This
will ensure that all of the algorithms run on the GPU.

Model-based pose recognition and estimation systems thatun on the GPU can be
implemented using a shader framework. Kyriaziset al. proposed such a system, with
a focus on hand tracking. The system does not use the computeal capabilities of
GPUs, preferring to use the Direct3D shader framework 47].

The system uses multiple visual cues such as colour images calepth maps to track
the hands. An input image is pre-processed with backgroundubtraction and edge de-
tection. A search is performed using the Particle Swarm Optiization (PSO) algorithm
[101], which continuously updates to select the particle that exibits the best position
and velocity inside a swarm of particles. The MapReduce schme proposed by two en-
gineers at Google, Dean and Ghemawat?f3], generates hypotheses based on the PSO,
intermediate key/value pairs and a reduce function. The redice function merges all
the intermediate values associated with the same intermedite key. Feature mapping
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computes the occupancy of pixels from the position map, edgefrom the normal map

and discrete layers from the depth map to produce a 3D model athe hand. For testing

purposes, a CPU implementation was created and a comparisowas performed between
the GPU implementation and the CPU implementation. Testing was conducted using a
580 GTX GPU and an i7 950 CPU. It is stated that the GPU implementation achieved

a 2{10 times faster processing speed than the CPU implement&n when tracking the

hands.

Park et al. used an example-based pose estimation algorithm that was d@ned specif-
ically for the GPU using the CUDA framework [68]. Their system did not focus on
estimating human poses. Instead it focused on poses of objedrom any viewing angle.
It uses a database of object poses, which are all matched agat an input image using an
error function. The error function uses distance transforns which measure the di erence
between the corresponding silhouette and the edges of the pat image to the images
in the database. The processing is performed using the CUDAr&dmework on the GPU.
The database of 2048 images consists of a collection of threk erent objects namely:

pipe, bolt and elbow.

For testing purposes, 210 di erent images were chosen, coissing of 20 pipes, 30 bolts
and 20 elbows. A CPU implementation was created and a compasbn was performed
between the GPU implementation and the CPU implementation. Testing was conducted
using a 280 GTX GPU and an Intel i7 Q9550 quad core CPU. Resultshow an average
accuracy of 96% and an average processing speed of 3 frames gecond (FPS) for the
GPU implementation. The same accuracy was achieved for the BU implementation,
but at a much slower average processing speed of 0.1 FPS. TheP@ implementation
therefore achieved a processing speed that was 30 times fastthan the CPU imple-
mentation. This shows that a huge performance increase canebachieved using the
GPU.

It should, however, be noted that the CPU implementation, in this case, was placed at a
disadvantage as only one core on the CPU was utilized, but mtiple cores were utilized
on the GPU. It is stated that symmetry will be used to reduce pose search space in an
e ort to get speeds that are closer to real-time in the future.

3.2.2 Image Processing on the GPU

This subsection discusses the use of the GPU to increase theqeessing speed of general
computer vision applications.
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Figure 3.2: VCM algorithm applied to a video of a girl dancing by Huang et al. [39]

Huang et al. used the CUDA framework to implement Vector Coherence Mapping
(VCM) on the GPU [ 39]. The VCM algorithm is used to extract motion elds from an
input image. The algorithm is of a parallel nature. It is robust to noise and e ective
in gesture motion tracking. VCM is an excellent test candidae for determining the
increased performance that the GPU o ers in algorithms that exhibit code parallelism.
The GPU implementation of the algorithm was compared to a CPU implementation
of the system. The test system consisted of a single core Irtdentium 4 CPU and
an NVIDIA 8800 GTS GPU. The test input image sequence consigd of a human
performing a dance. An unknown sequence of gestures perfoad during the dance were
tracked using the VCM algorithm. The processed image is disiayed in Figure 3.2, where
the length of the green lines indicate the magnitude of motim and the red arrows indicate
the direction of motion. The GPU implementation attained an average processing speed
of 3 FPS. It is remarked that the processing speed of the CPU iplementation was 41
times slower than the GPU implementation.

The CUDA framework was also used by Borovikov to produce a GPUWbased image
processing application that detects and tracks the pupil ofthe eye, which is a foundation
to detect and track the limbus of the eye [L1]. The GPU implementation used the CUDA

framework and was compared to the CPU implementation which sed the OpenCV
libraries without CUDA support. The implementation makes use of a custom blob
detector that is based on detecting circles using Hough trasforms. A low-pass lter and

an adaptive threshold are applied to the resulting image basd on the one-dimensional
Hue histogram, which contains the pixel data of the Hough cicle. This is an iterative

process. The radius of the detected circle decreases until ¢converges to the smallest
Hough circle, assumed to be the pupil. Tests were conductedot measure the speed
at which each iteration took place before convergence. Theest system consisted of a
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single core Intel Xeon CPU and an NVIDIA 260 GTX GPU which were compared. It
is stated that the GPU implementation was found to be 40 timesfaster than the CPU
implementation.

Zhugeet al. proposed a GPU-accelerated version of fuzzy connected imagegmentation
[107]. Their research is used to solve the problem of carrying oufuzzy connected image
segmentation on batches of radiology exams. This is a compationally intensive process.
The Magnetic Resonance Imagery (MRI) scan and the Computed ®mography (CT)
scan are examples of radiology exams that require such prosging. A GPU-accelerated
implementation that makes use of the CUDA framework was promsed in this work.

Fuzzy connected image segmentation computes fuzzy a nity elations and uses them
to keep track of a fuzzy object. The fuzzy a nity relations co ntain voxel pairs for the
tracking of the fuzzy objects using Dijkstra's shortest path algorithm [18]. A comparison
in the time taken to process Computed Tomography (CT) scans s performed between
the CPU implementation and GPU implementation. The performance of the CPU
implementation was optimized by utilizing all the cores. The test system consisted of
an Intel Xeon quad core CPU and three 580 GTX GPUs. The GPUs wee combined for
greater performance. The GPU implementation took 1.94 seawds and the CPU took
27.88 seconds to process the test set which contained an unswn number of CT images.
The GPU achieved an approximate speed up factor of 14. It wastated that the speed
up factor increases as the number of CT images increase.

3.2.3 General Purpose Computing on the GPU

GPGPU applications use the GPU to perform tasks that the CPU would otherwise
perform. This can be used to improve the processing speed oégeral-purpose computer
programs that exhibit code parallelism.

Bakkum and Skadron used the CUDA framework to accelerate theSELECT query in a
Structured Query Language (SQL) database on the GPU T]|SQLite. This was com-
pared to the CPU implementation of the database. Both the CPUand GPU implemen-
tations load all data to be used into memory to prevent latendes associated with disk
access. The CPU implementation is multi-threaded for improved performance. Both
of these techniques are adopted for use in this research ase can potentially reduce
hardware-related latencies.

In the GPU implementation the SELECT query was accelerated ly assigning each row in
atable to a thread. A limited number of aggregation functions, essential for performing a
SELECT query on integer values, were implemented on the GPUExamples are COUNT,
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1. SELECT id, uniformi, normali5 FROM test WHERE uni-
formi > 60 AND mnormalib < 0

2. SELECT id, uniformf, normalf5 FROM test WHERE uni-
formf > 60 AND normalfb < 0

3. SELECT id, uniformi, normali5 FROM test WHERE uni-
formi > -60 AND normalib < 5

4. SELECT id, uniformf, normalf5 FROM test WHERE uni-
formf > -60 AND normalfb < &

5. SELECT id, normali5, normali20 FROM test WHERE (nor-
mali20 + 40) > (uniformi - 10)

6. SELECT id, normalf5, normalf20 FROM test WHERE (mor-
malf20 + 40) > (uniformf - 10)

7. SELECT id, normalib, normali20 FROM test WHERE nor-
malib5 * normali20 BETWEEN -5 AND 5

8. SELECT id, normalf5, normalf20 FROM test WHERE nor-
malf5 * normalf20 BETWEEN -5 AND 5

9. SELECT id, uniformi, normali5, normali20 FROM test
WHERE NOT uniformi OR NOT normali5 OR NOT normali20

10. SELECT id, uniformf, normalf5, normalf20 FROM test
WHERE NOT uniformf OR NOT normalf5 OR NOT normalf20

11. SELECT SUM(normalf20) FROM test

12. SELECT AVG(uniformi) FROM test WHERE uniformi >
0

13. SELECT MAX(normali5), MIN(normaliS) FROM test

Figure 3.3: 13 queries used in the testing procedure7].

SUM, MIN, MAX and AVG. Similarly, a limited number of opcodes were implemented on
the GPU, such as ADD, OR and BITAND. The CPU implementation us ed the standard
SQLite application.

The test system consisted of an Intel Xeon X5550 quad core CPlEnd an NVIDIA Tesla
C1060 GPU. The data set consisted of ve million rows with an d column, three integer
columns, and three oating point columns. The test set was geerated with the GNU
scienti c library's random number generation functionali ty. A test was performed using
the 13 queries depicted in Figure3.3. The GPU implementation took an average of
0.045 seconds to perform the queries and the CPU took an avega of 2.2737 seconds.
This results in a processing speed that was 50 times faster ache GPU implementation.
However, when taking the extra 0.018 seconds that the GPU nais to transfer the result
back to the CPU into account, it achieves an average speed umttor of 36.

Rizk and Lavenier used the CUDA framework to increase the proessing speed of the
folding algorithm, which analyzes Ribonucleic Acid (RNA) and Deoxyribonucleic Acid
(DNA) structures [ 76]. The computationally intensive algorithm uses dynamic program-
ming to solve a function. The function recursively measureghe energy of the structure
according to its sequence, length and type.

A comparison was performed on a number of di erent CPUs and GRJs. The CPUs
used were the Intel Xeon X5430 quad core, Core2 duo 6700 and am 4 3 GHz
edition, henceforth referred to as Xeon, C2 and P4 respectaly. Additionally, two
implementations of the Xeon were compared, one which used tna single thread and
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Figure 3.4: Comparisons of computation time of GPU and CPU implementations of
the folding algorithm by Rizk and Lavenier [76].

the other which used 8 threads, denoted as Xeon*8. The GPUs esl were the NVIDIA

Tesla C870 and the NVIDIA GTX280, henceforth referred to as Tesla and GTX280
respectively. Two implementations of each of these GPUs wer compared, one which
used a single GPU and one that used two identical GPUs, denotk as Tesla*2 and
GTX280*2. The total computation time in seconds of 40000 ramlomly generated RNA
sequences of length 120 for each CPU and GPU is illustrated ifrigure 3.4. It should

be noted that a shorter computation time indicates a higher gocessing speed.

The fastest GPU implementation performs 4 times faster thanthe fastest CPU imple-
mentation. In fact, even the slowest GPU completes processg 8 seconds faster than the
fastest CPU. It is clear from the results that the GPU implementations perform better
than the CPU implementations. Furthermore, it should be noted that Xeon*8 achieved
a signi cantly faster processing speed than Xeon, an appraxate speed up factor of 8.
This shows that multi-threading can be used to achieve signcantly better processing
speeds.

3.3 Conclusion

In this chapter, a background on the CUDA framework was discissed. This was fol-
lowed by a survey of studies which focused on investigatinghte use of CUDA to achieve
increased processing speeds. The studies were categorizatording to their relevance
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to this research. Discussed were implementations involvig: pose recognition and esti-
mation, general image processing and general-purpose couotation.

Of note is the discussion of Bakkum and Skadron's work which evealed the technique
of loading all the data to be used into memory to reduce disk acess. This technique is
adopted in this research. Furthermore, Rizk and Lavenier'swork revealed that multi-
threading a system can lead to a signi cant increase in procssing speed.

It is concluded that the CUDA framework on the GPU can be used b signi cantly
increase the processing speed of computationally intensvapplications. It is adopted
for use in this research.



Chapter 4

Image Processing in
Learning-Based Pose Recognition
and Estimation Systems

This chapter discusses the components that form part of the darning-based approach
used in the pose recognition and estimation methodology uskin this research. The
components of the feature extraction process are discusseéu Section4.1. These compo-
nents include: face detection, skin detection, backgroundubtraction and morphological
operations. Once the relevant features have been acquiredhe¢y are represented as vec-
tors and used to train and test a SVM. Section4.2 provides a detailed discussion on
SVMs.

4.1 Feature Extraction Techniques

4.1.1 Face Detection

Face detection can serve as the foundation for image procesg in learning-based systems
for three reasons 9, 61]:

1. It identi es when an individual is present before the camea.

2. It makes it possible to normalize an image sequence by repitioning the individual
such that he/she is in the centre of the frame at all times.

3. It is used as a reference point to nd other points of interest on an individual's
body.

28
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A popular implementation of face detection uses the Viola-&nes object detection frame-

work. The framework uses Haar classi ers to build a boosted ejection cascade of nodes
to achieve a high positive detection rate $4]. To make this possible, a low rejection

rate multi-tree classi er based on AdaBoost is used at everynode in the cascade. Their

framework can be described in four stageslp]:

1. The computation of Haar-like wavelet features used as ingt.

2. The computation of an integral image to accelerate the corputation of Haar-like

wavelets.

3. The use of a statistical boosting algorithm based on AdaBost that characterizes
nodes.

4. The organization of weak classi er nodes as a rejection czade.

The following subsections discuss these four stages.

41.1.1 Haar-like Wavelets

Haar-like wavelets are single wavelength square waves thdtave one high and one low
interval [103. They consist of pairs of rectangles that have identical sie and shape, are
either light or dark, and are either vertically or horizonta lly adjacent. Haar-like wavelets

consist of three types of features: a two-rectangle featurea three-rectangle feature or a
four-rectangle feature. The features used speci cally forthe face detection method are
illustrated in Figure 4.1

The two-rectangle features, depicted in blocks A and B of Figre 4.1, are determined by
taking the di erence between the sum of the pixels within ead of the two rectangular
regions in each case. The three-rectangle feature, depicden block C of Figure 4.1,
is computed by summing the pixels within the two outside rectangular regions and
subtracting it from the sum of the pixels in the centre rectangular region. The four-
rectangle feature|block D of Figure 4.1]is computed by taking the di erence between
the diagonal pairs of rectangles. In each case a threshold applied to the result. The
thresholded result indicates whether or not each feature igpresent.

Haar-like wavelet features are computed at multiple image dcations and scales. Integral
image representation is used to e ciently compute these fetures.



Chapter 4. Image Processing in Learning-Based Pose Recognition and Emation
Systems 30

Figure 4.1: The Haar-like wavelet features used in the Viola-Jones faceletection
method [103.

4.1.1.2 Integral Image

Integral images are used to e ciently determine the presene or absence of hundreds of
Haar-like wavelet features at every image location and at seeral scales. The original
image is converted to an integral image by taking the sum of dlthe pixels to the left and
above a corresponding pixel. Starting at the top left pixel d image |, proceeding row
by row, each integral pixel valuel {x;y) in the integral image | °is computed recursively
by the formula [103:

1oGy) = 16y)+ 1% Ly)+ 1%y 1) 1% 1, 1) (4.1)

41.1.3 AdaBoost

The Viola and Jones [L2, 103 face detection method uses a modi ed AdaBoost algorithm
that selects a small set of features and trains the classi er This learning method creates
a strong classi er by combining many weak classi ers. A weakclassi er recognizes more
features than it rejects. Weights are assigned to each weakassi er, a process known as
boosting. The best weak classi er is selected at each boostj interval. The result is a
strong classi er consisting of a weighted combination of cissi ers. Figure 4.2 illustrates
an example of the features selected by AdaBoost.
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Figure 4.2: Features selected by AdaBoost for face detectionlp).

Figure 4.3: The detection process for rejecting regions in the imagelp).

4.1.1.4 A Rejection Cascade of Weak Classi er Nodes

The Viola and Jones face detection method organizes weak dsi ers in a cascade struc-
ture. A cascade signi cantly increases the processing spdef the face detection method
by quickly eliminating background regions and focusing on pomising regions in the im-

age. The promising regions appear to be object-like and areet aside for further pro-

cessing. These regions are selected such that the heavieriglgted classi ers are selected
rst in the cascade for a faster elimination process. The praess of elimination has the
structure of a degenerate decision tree.

The initially selected classi er|the classi er with the he aviest weight|is applied to the
promising regions in the image. If the classi er returns a paitive result, it indicates that

a possible face has been detected. The process is repeatedsosequence of increasingly
complex classi ers. Processing on the region ends immediaely when a negative result
is obtained. A face exists in the image region when a positiveesult is obtained through
all the classi ers. The face detection process is illustragd in Figure 4.3.
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Figure 4.4: Examples of true positives for Viola-Jones face detection m a random
test set [1].

4.1.1.5 Testing and Results on the Face Detection Method

The face detection accuracy of the Viola-Jones algorithm ws evaluated by Achmed using
a frontal face test set consisting of 1047 images randomly Eeted from the Internet [1].
The images in the test set have varying background complexies and camera properties.
An accuracy of 88.9% was obtained. Some of the results are ubtrated in Figure 4.4.
The results show a high accuracy, which is especially desipée when using face detection
as the foundation of the feature extraction process.

4.1.2 Skin Detection

Skin detection identi es the pixels in an image as either skin or non-skin pixels [L3]. This
process is the basis of a number of applications involving t detection of the human body
and is especially useful in hand detection and tracking37, 51]. It is robust to partial
occlusions, rotations and the scaling of body parts44]. The fact that most skin tones
are distinct from the colours of most other objects can be us#to help detect and track
speci ¢ body parts [62]. However, detecting skin pixels can be non-trivial depenithg on
factors such as illumination, the viewing angle and variouscamera properties. Creating
a skin lter consists of the following three steps B4, 62, 107:

1. An appropriate colour space needs to be selected to repe# the pixels in the
image.

2. A suitable classi cation algorithm needs to be used to moel skin pixels.

3. Each pixel needs to be classi ed as either being a skin or meskin pixel.

Colour spaces are used to mathematically represent colouia various ways [L05. There
are a wide variety of colour spaces, but many have common pragties. For this reason
only the most widely used colour spaces will be discussed.
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4.1.2.1 RGB Colour Space

RGB stands for Red-Green-Blue and is the default colour spae used in computer graph-
ics [L0Z. It uses a combination of red, green and blue pixel values toepresent the colour
of a single pixel. Other colour spaces are obtained by perfaring a linear or non-linear

transformation on the RGB colour space. The transformation can be visualized as a
cube consisting of red, green and blue on the three perpenditar axes, respectively.

The RGB colour space is simple to use, but it is not perceptudy uniform. This means
that the colours that humans perceive do not correspond to tke actual colour value
[102 105. Furthermore, the red, green and blue channels are highly annected, and
luminance and chrominance data is not separated. Colour-bsed recognition algorithms
are not likely to be as robust when using this colour space.

4.1.2.2 Normalized RGB Colour Space

The normalized RGB colour space is obtained by applying the dllowing normalization
formula to the default RGB colour space:

R R R

R+c+8 9 R+c+8 2 R+G+ B (4.2)

r =

wherer; g and b are the normalized red, green and blue pixel values, respeagely, and
R; G and B are the red, green and blue pixel values from the RGB colour sqce, respec-
tively. It should be noted that the sum of the normalized pixel values is 1, as follows:

r+g+b=1 (4.3)

Since the sum is a constant, the third component can be omittd as it does not hold
signi cant information. This reduces the space dimensionéity [ 44, 102. The remaining
components,r and g, are less sensitive to lighting changes in the normalized RB colour
space.

4.1.2.3 HSV Colour Space

HSV stands for Hue-Saturation-Value and is also known as HShnd HSL. The HSV
colour space has proven to be reliable for skin detection ani based on human colour
perception (45, 87, 105. It describes colour in terms of Hue, Saturation and Value.The
Hue component de nes the dominant colour of an area and the Saration component
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measures the amount of dominant colour of an area in proportin to its illumination.

The Value component stores the brightness information of a clour. A non-linear trans-
formation is performed to map the RGB colour space to the HSV olour space. It is
formulated as follows [LOZ:

g = MaXrgp min r.g:p iy
8 v :
g b . : _
% 6(Maxy gy  MiN gp )’ ifVvV=r
= 2 b ey o
" § 6(max rg;p r +min rgib )’ ifvV =g (4.4c)
49t jfy=b

6(max r.g:p min rg:p )’

whereH;S and V are the Hue, Saturation and Value components, respectively; g and
b are the normalized red, green and blue pixel values, respeagely, and max,q and
min .g;p are the maximum and minimum between the normalized red, gree and blue
pixel values, respectively. An interesting property of the Hue component is that it is
una ected by illumination changes [88, 105.

4.1.2.4  YCDbCr colour space

The YCbCr colour space is commonly used by European televien studios as well as
in video and image compression schemes such as MPEG and JPEGOR. A linear

transformation is used on the RGB colour space to obtain the YCbCr colour space. The
luminance component Y is the colour value and is computed by d@king the weighted
sum of the RGB pixel values. The chrominance components knowas Cr and Cb are
computed by subtracting the luminance component from the rel and blue pixel values.
It is formulated as follows:

Y =0:299R +0:587G + 0:114B (4.5a)
Cr=R Y (4.5b)
Cb=B Y (4.5¢)

where Y represents the luminance componentCr; Cb represent the chrominance com-
ponents andR; G and B are the red, green and blue pixel values from the RGB colour
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space, respectively. This colour space is also suitable fakin detection as it separates
luminance and chrominance components.

4.1.2.5 TSL Colour Space

TSL stands for Tint-Saturation-Lightness [44]. It is a colour space that is obtained by

performing a transformation on the normalized RGB colour space. 1fr®= r %;goz

g % the TSL colour space can be formulated as followslP2:

rctan

Eacaz(gﬁ:)_'_i’ Ifgo>o
T= § arctazn(gq, + %; if g0< 0 (4.6a)

0 if g°=0

r

@ @
s= AT+g (4.6b)
5

L=0:29R +0:587G +0:114B (4.6¢)

where T; S and L are the Tint, Saturation and Lightness pixel values andr®and g° are
variants of the normalized red and green pixel values givenya

(4.7)

1
«Q
Wl =

4.1.2.6 An appropriate colour space for skin detection?

Two factors are taken into consideration when selecting a dour space suitable for skin
detection [44, 85, 102 105:

The colour space must aid the separation of skin and non-skipixel values.

It must also address the problem of dynamic lighting conditions that interfere with

the colour distribution.

Four studies have been performed by researchers to investtg the e ectiveness of various
colour spaces in skin detection algorithms 44, 85, 102 105. Kakumanu et al. [44]
and Shin et al. [85 concluded that there was no signi cant improvement to the <in
detection process when using a non-RGB colour space as comipd to using the RGB
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colour space. Furthermore, they concluded that eliminatirg the brightness component
does not improve the discrimination between skin and non-sk pixels. However, they
suggest that the training data used in the classi cation process may benet from the
elimination of the brightness component.

On the other hand, Zarit et al. [105 and Vezhnevetset al. [102 suggest that an
appropriate colour space should be chosen based on the inpformat of the image as
well as whether the post-processing steps require a speciaolour space. They also state
that the HSV colour space has been proven to aid the skin detdion process.

It is therefore unclear whether a non-RGB colour space shodlbe used in skin detection.
Many researchers choose a particular colour space withoutgtifying their choice. How-
ever, many researchersZ0, 21, 25, 88] agree with Forsyth and Fleck 28] that the Hue
component in the HSV colour space has a colour range that e dovely represents any
human skin colour. Human skin colour is formed by the combin&on of haemoglobin,
carotene and melanin 98]. Haemoglobin carries the oxygen in the red blood cells and
forms a pink-red colour in the skin. Carotene is mostly foundin the palms and soles
with a vivid yellow-orange colour. Melanin is the primary factor of skin colour. There
are two types of melanin, namely, pheomelanin, which is red rrd eumelanin, which is
dark brown. The Hue component in the HSV colour space represgs the combination of
these colours very well 20, 21, 25, 88]. Determining the optimal colour space is beyond
the scope of this research, but based on the above researchcan be concluded that the
Hue component can e ectively represent the skin colour of egry race and skin tone.

4.1.2.7 Skin Model

Many researchers make use of a static skin model. This techgie fails to identify skin
pixels when applied to diverse skin tonesd, 69]. Studies show that the skin diversity in
South Africa and other sub-Saharan African countries is thehighest in the world [73].
An adaptive skin model is therefore necessary.

Achmed proposed a dynamic solution that uses an individuab nose colour to identify
and continuously update the skin colour distribution of that particular individual [ 1]. A

10 10 pixel area at the centre of the nose is used because it is tigally void of non-skin

pixels, such as shadows, eyes or spectacles, that are presen the face. The Hue values
of the area around the centre of the nose are represented as &togram, which functions

as a look-up table for skin pixel values.

The histogram groups these pixel values, also known as datagints, into bins. The bin
width determines the number of data points that are assignedper bin. For example, if
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Figure 4.5: Input Image.

Figure 4.6: Skin Image.

the bin width is 8, then the rst bin will contain the pixel val ues that fall into the range
0{7, the second bin will contain pixel values that fall into t he range 8{15 and so on.

The Hue histogram is back-projected on to the original imageto form a new greyscale
image. The greyscale image consists of intensity values rging from 0 to 255. The
value 255 indicates the highest likelihood ratio of skin cadur while a value of O indicates
the highest likelihood ratio that the pixel is of non-skin colour in the histogram. A
pre-determined threshold is used to binarize the image intoskin and non-skin classes.
Achmed [1] and Li [51] determined that a threshold of 60 is satisfactory.

Figure 4.6 is the result of applying the histogram back-projection mehod to the image
depicted in Figure 4.5. Noise pixels can be observed in Figure.6 in the form of the
two horizontal parallel lines on the right side of the gure. This is caused by certain
objects, such as furniture and leather, being falsely idented as skin. This problem can
be addressed by combining the skin image with a background d&tracted image.



Chapter 4. Image Processing in Learning-Based Pose Recognition and Emation
Systems 38

4.1.3 Background Subtraction

Background subtraction separates the background from thedreground in a sequence of
images pQ]. In this research the foreground image consists of the armef the person
standing in front of the camera performing sign language. Tle background subtraction
algorithm should satisfy the following three conditions in order to e ectively obtain the
objects of interest B1]:

1. It should not fail under dynamic lighting conditions.

2. Moving background objects such as tree leaves, rain or smoshould not be detected
as part of the foreground image.

3. It should be robust to sudden changes in the scene.

The subsections below discuss well-known background sulgction techniques.

4.1.3.1 Static Background Subtraction

Static background subtraction uses a static reference imag as the base of subtraction,
commonly the rst frame in the sequence. Each frame in the im@e sequence is sub-
tracted from the reference image. A threshold is applied to he result to separate the
background from the foreground. This process can be descrddl as a binary classi ca-
tion technique where each pixel in the current image either lelongs to the background
or foreground class 24]. For each pixell (i;j ) at position (i;] ) in the current image |,
label | is assigned to the pixel wherd 2 f background;foregroundg. Label foreground
is assigned to the pixel if the following equation is satis al:

L(@7) R@G) > Th (4.8)
where R(i;j ) is the pixel at position (i;j ) in the reference image andT}, is a threshold
determined empirically [51]. Label backgroundis assigned if the following equation is
satis ed:

L@5) R@)  Th (4.9)

The object of interest is highlighted using this mask, with background pixels set to black.
This background subtraction technique is applied to an individual moving his right arm
in Figure 4.5. The resulting image is illustrated in Figure 4.7.
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Figure 4.7: Result of static background subtraction.

4.1.3.2 Frame Di erencing

Frame di erencing is similar to static background subtraction. The key di erence is

that the reference image is continuously updated throughotithe image sequence. The
image that precedes the current image in the image sequence commonly used as the
reference image. A pixell »(i;j ) at position (i;]j ) in the current image |, is labeled as
foreground when the following equation is satis ed:

jl2(i))  1a(Bj)j> Tn (4.10)

where | 1(i;j ) is the pixel at position (i;j ) in the dynamic reference imagel; and T, is
a threshold determined empirically [B1].

4.1.3.3 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) model the background pixelsas a mixture of adaptive
Gaussians 91]. The history of a pixel (i;] ), at time t, across image sequencke can be
formulated as:

flo;onlig=FI(5x):1 x  tg (4.11)

Given k Gaussian distributions, each pixel can be modelled by a mixire of these dis-
tributions. The probability that a pixel may have a value I at time t can be evaluated
using the following formula:
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XK
P(ly) = Wiyt (It xts xt) (4.12)
x=1

where Wy is the estimated weight parameter of the x-th Gaussian component and
(It; xt; xt) is the normal distribution of the x-th Gaussian component represented

by:

1

( )” — T eTl(It xt )T ><:tl(|t xt ) (4.13)
2 )2 J X;t jj

Ity xt xt)=

where . isthe mean and . = ﬁ;tl is the covariance of thek-th Gaussian component
and | is the identity matrix. The number of distributions, k, are o rdered based on
the tness value M and the background of the scene is modelled using the rst M

distributions where M is estimated as:

xn
M =argmin,( Wyt >Thp) (4.14)

X

whereTy, is the threshold, which is the minimum segment of the backgrand model. After
the background has been updated, the foreground is detectduay labelling any pixel found
to be more than 2.5 standard deviations away from any one of te M distributions as
foreground. If the test value matches thex-th Gaussian component, then it is updated

as follows:

Wit = Wyt 1 (4.15a)
st =(1 ) xt 1t Iy (4.15b)
o=@ ) &1+ (It x0T xa) (4.15c)

= (]« ® (4.15d)

where Wy is the x-th Gaussian component and? is de ned as the time constant that
determines change. If the Gaussian component does not matdhe test value, then it is
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updated with the following equation:

Wyt = (1 YWt 1 (4.16a)
xt = xt 1 (4.16b)
KT w1 (4.16¢)

If none of the components match the test value, then the compoent with the lowest

probability is replaced by a new one with a low weight parameer, a high variance and the
current value as its mean. When the Gaussian distributions & evaluated, pixels that
do not match are classi ed as foreground and grouped using 2@onnected component
analysis.

4.1.3.4 A comparison of the Background Subtraction Techniques

The di erent background subtraction techniques have relative strengths and weaknesses.
Selecting a suitable technique depends on its e ectiveneg®wards a particular applica-
tion. Comparisons of the accuracy of di erent background subtraction techniques are
not common, especially on a per-application basis. It is cuently not possible to com-
pare the accuracy of the di erent techniques as there is presntly no work on unbiased
background subtraction benchmarks on di erent applications. However, the strengths
and weaknesses of each technique have been highlightetD[ 91] and are summarized in
Table 4.1

Static background subtraction has a high processing speedyut is severely a ected by

a non-static background. It provides information about the location of motion. GMMs

have a low processing speed compared to the other two technigs, but they adapt to

a changing background and provide more information about tle objects in the scene,
that is, both the location and intensity of motion. Frame di erencing operates at a high
speed and is robust to a non-static background. It, howeverprovides less information
about the objects in the scene, that is, the location of motim only.

These strengths and weaknesses can be used to select a suigatechnique depending on
the speci c application.
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Technique Strengths Weaknesses
Static Background
Subtraction Simplicity Accuracy is aected by

High processing speed

the object of interest's
speed and the frame
rate

Can be aected by a
slower moving object in
a scene that is not the
object of interest

Background model does
not update

Frame Di erencing

Simplicity
High processing speed

Background model can
update at every frame

Accuracy is a ected by
the object of interest's
speed and the frame
rate

Can be aected by a
slower moving object in
a scene that is not the
object of interest

GMMs

Rich source of informa-
tion

The threshold for each
pixel adapts with re-
spect to time

Additional objects can
merge with the existing
background model with
time

Slower processing speed

Fails when lighting sud-
denly changes

Accuracy and back-
ground adaptation is
highly dependent on the
selected parameters

Table 4.1:

4.1.4 Morphological Operations

A comparison of the background subtraction techniques.

The morphological operations used in image processing areabed on mathematical mor-

phology that uses a non-linear approach to image enhancememased on set theory

and the geometry found within images. A structuring elementis used as input to the

relevant operation which is applied to a binary image that requires enhancement. The
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Figure 4.8: 3 3 structuring element [3]

structuring element is an image processing element that ispeci ed by a pattern of ele-
ments relative to an origin at the centre pixel [3, 12]. A 3 3 pixel structuring element
is depicted in Figure 4.8.

The structuring element is scanned over the pixels in an imag and its elements are
compared to the pixel values in a way that is similar to a mask. Each operation has a
de ned set of rules applied to achieve a desired enhancemenfThese rules are applied
based on the comparison of the values of the structuring eleent and the image pixels.
Two basic and useful morphological operations are erosionna dilation. Opening and

closing are two additional morphological operations that ae derived from erosion and
dilation. Other morphological operations exist, such as thnning, thickening and medial

axis transform, but are not dealt with because they are not ugd in this research. The
interested reader is referred to 27] for a further reading on these operations. The
following subsections discuss the erosion, dilation, opémg and closing operations.

41.4.1 Erosion

Erosion eliminates boundary image regionsd, 12]. It causes image regions to shrink
and black pixel regions to grow. It can be used to remove smalisolated noise regions
in an image. When each pixel in the structuring element corrgponds to a foreground
pixel in the image, these pixels remain foreground pixels, therwise they are set to
background pixels. Erosion of a binary image by a structurirg element in setA and set
B is represented by the symbol and can be de ned as:

A B=fxj(B) Ag (4.17)

where By is the set B translated by the vector x.
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4.1.4.2 Dilation

Dilation expands boundary image regions 3, 12]. It causes image regions to grow and
black pixel regions to shrink. It can be used to X regions in an image that lack pixel

continuity. It is the exact opposite of erosion. This means tat when dilation is applied

to an image, it will have the same result as erosion on the invse of that image. When

each pixel in the structuring element corresponds to a backgund pixel in the image,

these pixels remain background pixels, otherwise they arees to a foreground pixels.

Dilation of a binary image by a structuring element in set A and setB is represented
by the symbol and can be de ned as:

[
A B= Ap=fxj(BSx\ A60g (4.18)
b2 B

where BS denotes the re ection of the setB and (B*®)y is B® translated by the vector x.

4.1.4.3 Opening

Opening is a morphological operation that is the application of erosion followed by
dilation on an image [3, 12]. This operation is used to smooth the contours of objects,
reduce ne noise and enhance the features in an image. Opergrof a binary image by
a structuring element in set A and set B is represented by the symbol and can be
de ned as:

A B=(A B) B (4.19)

4.1.4.4 Closing

Closing is a morphological operation that is the applicatian of dilation followed by ero-
sion on an image 8, 12]. This process lIs large background regions surrounded by
foreground pixels|features resembling large holes|in the image but can, in turn, intro-
duce additional noise into the image. Closing of a binary imge by a structuring element
in set A and setB is represented by the symbol and can be de ned as:

A B=(A B) B (4.20)

A property that closing and opening share is that both operaions are idempotent,
which means that repeating the operations on an image has noect on the image and
contributes to unnecessary computation time B, 52).
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Figure 4.9: (a) Linear Classi cation. ( b) Non-Linear Classi cation [ 63].
4.2 Support Vector Machines

Support Vector Machines (SVMs) have been used extensivelyni pattern recognition
problems B3, 104. An SVM is a machine learning tool that is derived from statistical
learning theory that classi es data into one of two classes.lts classi cation mechanism
has been extended to support multiclass problems.

SVMs o er several advantages over other classi ers 104. One signi cant advantage
is that the training time is not a ected by the high dimension ality of feature vectors
from large images. Another advantage is the power and exibity provided by kernel
functions. It is possible to change from the default linear lernel to the other alternative
kernels such as the radial basis function, polynomial, sigmwid or other newer kernels.
The use of alternative kernels can help spread out data poirgtin the training model more
evenly. Furthermore, kernels make it possible to use lineaclassi cation techniques to
solve non-linear classi cation problems.

SVMs aim to maximize a mathematical function given a collecton of data points [63].
Data points that consist of two classes can be separated by ding a boundary that
separates those two classes. Consider a sBtof M training points expressed asS =

R" and eachy; 2 f 1;1g is the label that corresponds to the data points, divided into
a positive and a negative class.

Consider that the two classesS* = fx;jy;=1g andS = fx;jy; = 1g are linearly
separable inR". This results in at least one boundary that can be formed betveen them
[63]. This boundary is referred to as the decision boundary, whih is determined by
training the SVM and is illustrated in Figure 4.9a).

In a higher-dimensional space, the decision boundary takethe form of a plane, illus-
trated in Figure 4.10. It is referred to as the decision hyperplane and de ned by tte
following equation:
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Figure 4.10: Linear classi cation using a hyperplane.

Figure 4.11: Various decision boundaries on the data set.

f(x)=w x+b=0;w2R";b2R (4.21)

where w is the normal vector and b is the interim term. Vector w of the decision
hyperplane is de ned as a linear combination ofx; with weights ; as follows:

hd
w = i XiYi (4.22)
i=1

As illustrated in Figure 4.11 many decision boundaries can be drawn to separate the
data set. However, only one solution, the green line in Figue 4.11, achieves maximum
separation between setsS* and S . SVMs aim to determine this solution, known as
the optimal hyperplane. Using this hyperplane allows an SVMto classify new data
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Figure 4.12: Optimal hyperplane and maximum margin [63].

points more accurately. The optimal hyperplane passes thragh the mid-point of sets
S* and S and ensures that the distance between the two sets, known ashé margin,
iS maximized.

The data points of setsS* and S that are located on the boundaries of the margin are
known as the support vectors. A simple rescale ofv for all x; that are support vectors
holds that:

w Xi+b=1 (4.23a)

w Xj+b= 1 (4.23b)

The distance d between the decision boundary and the margin can be expresseas:

2
d= —— 4.24
nywi ( )

The optimal hyperplane has the following two features: it ckarly separates the data
points of setsS* and S ; and it achieves the maximum distance to the nearest data
point from both classes. The rst feature dictates that all d ata points should be classi ed
correctly [99]. Hence, the parametersw and b of the hyperplane are to be estimated
such that:

yilw xj+ b 1lfory;j=1 (4.25)

and
viw Xij+b 1fory;j= 1 (4.26)
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These two equations can be combined to give:

viw xi+b 1 0;,8i=0;12 N (4.27)

The second feature dictates that the margin should be as larg as possible. Maximizing
the distance equation is the same as minimizind%. Therefore, f (w) = % i wjj?
should be minimized. Following this, the optimal hyperplane can be found by solving
the optimization problem de ned as:

Minimize %jj w jj2 (4.28)

subject to
viw xi+b 1 0;8i=0;1;2 'N (4.29)
This problem can be solved, given the Lagrange multipliers 1; »2; ; n 0 and the

saddle point of the Lagrange function:

X!
Lwib; )= Siiwi? i xi+ B 1) (4.30
i=1

Therefore, using the Lagrange function, the optimization poblem can be expressed as:

X 1 X
Maximize i = i YiYi(XisXj) (4.31)

subject to

iyi =0 and 0;i=0:;1;2 N (4.32)
i=1

The optimal hyperplane discriminant function under this formulation is:

X
f(x)= iyi(xix)+ b (4.33)
i2s

where S is the subset of support vectors corresponding to positive &grange multipliers.

Non-linear problems require more complex structures to nda hyperplane. In the case
of Figure 4.9 (b) the data points are unevenly distributed and non-separdle compared
to those in Figure 4.9 (a). These are the cases where classes are not linearly seplale
and the constraint of equation 4.27 cannot be satis ed. A solution to these cases is a
cost function that combines the margin maximization and minimization or error criteria.
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This is achieved by using slack variables; which measure the degree of misclassi cation
of the data x;. The cost function can be expressed as:

X

Minimize y p: % jwijj2+C i (4.34)
i=1
subject to
yiw xj+b 1 (4.35)
where ;| 0 and C are constants.

The parameter C determines the trade-o between the amount of error to be tokrated
and the margin maximization. Mercer's theorem P6] is used in the mapping space, so
that the dot product of the vectors can be equally formed as adinction of dot products
of the corresponding vectors in the current spaceg3]. This equivalence can be expressed
as:

Kxi;xj)= (xi) (xi)
= (xi;x3) (xj;x?) (4.36)
= XiXj + Xi2Xj2 |

=X %)+ (%i5%))?

where the kernel function is represented byK (X;; ;). This expression is true if and only
if the following condition holds true for any function g:

z z
g(x)?dx is finite =) K (x;y)g(x)g(y)dxdy O (4.37)

Without knowing the explicit form of |, any data can be linearly separated in the higher
dimensional space by simply selecting an appropriate kerddunction. Thus, the dual
optimization problem can be de ned as:

M R
Maximize i = i YiYi(xiix;) (4.38)
i=1 2 i =1
subject to
b4
ivi =0 and 0 (439)

i=1

It should be noted that drawing a complex curve is not suitable for separating data. An
alternative is to nd an optimal hyperplane in the feature sp ace that separates the data
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clearly and allows an SVM to accurately classify new test dat. The decision function
therefore becomes: X
f(x)= iyi(xix)+ b (4.40)
i2s

where S is the set of support vectors.

4.2.1 Kernel Functions

In cases where the data is not linearly separable, a suitablbyperplane that separates
the classes is required. To achieve this, a kernel functiorsiused to map the data from
the current space onto a higher-dimensional feature spacelhe following basic kernels,
based on Mercer's theorem, are used by the SVM for training ath classi cation, where
r,d and are kernel parameters 35]:

Linear: K (xi;xj)=(xi)T (xj)
Polynomial: K (xi;xj) =( (xi)T(xj)+ r)d:where > 0
Radial Basis Function: K (Xj; xj) = exp( i Xi o X jj2);where > 0
Sigmoid: K (xj; Xj) = tanh( (xi)T (xj)+ r),where > 0
The choice of kernel is important because it a ects the predttion accuracy of the SVM

[19]. There is no standard on how to choose an optimal kernel. A pcess of trial and
error is often used to choose the kernel most suited to an apjglation.

4.2.2 A Comparison of Multi-Class SVM Techniques

SVMs are inherently binary classi ers that are intended towards problems involving two
classes. However, they can be used in problems involving meithan two classes using
a variety of techniques that have been proposed in the literture [36]. These techniques
generally take the form of a combination of binary classi ers and a decision strategy
to determine which class the input pattern belongs to. Threeof the most common
techniques are explored in the following subsections3p].

4.2.2.1 One-vs-Rest

Consider an M -class problem. This technique separates the data points ofvery class
i 2f1;2;:::Mg from the data points of the remaining classes. The data poirgé from
all classes except class are combined to form a single class. This results in a binary
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classi er with a label representing classi and another label representing the remaining
classes. Repeating this procedure for every class2 f 1;2;::: Mg results in a total M
classi ers.

The testing phase consists of a test pattern that is presente to all M classi ers. Class
i with the maximum output value is determined as the predicted label. This technique
results in long training and testing times due to the potentially large number of data
points in each combination pair of classes.

4.2.2.2 One-vs-One

This technique trains w binary classi ers using every binary pair-wise combinatian
of M classes. The Max-Wins algorithm is used to combine the @lssi ers. Every classi er
is trained to di erentiate between two classes using the da& points in those classes as
positive and negative examples.

The testing phase uses the Max-Wins algorithm to determine he class with the majority

of votes. This technique results in a shorter training time than the One-vs-Rest technique
due to the number of data points in the combination of classedeing smaller. However,
it has longer testing times than the One-vs-Rest technique de to the large number of
classi ers involved.

4.2.2.3 Directed Acyclic Graph

Platt et al. introduced the Directed Acyclic Graph (DAG) SVM algorithm [ 71]. The
training phase is similar to the One-vs-One technique, whes w binary classi ers
are trained using every binary pair-wise combination of theM classes. The testing
phase is based upon a rooted binary DAG that consists OW internal nodes and
M leaves.

For example, assume a 4-class problem with 2 f 1;2; 3;4g. Figure 4.13 illustrates the
DAG constructed using the pair-wise binary classi ers. Bednning at the root node,
classes 1 and 4 are compared. If the input pattern is classi@ as class 1, then it means
that class 4 was rejected. Thus, from this node onwards, it wi not be necessary to
classify against class 4 again. Hence, aftavi 1 = 3 steps, a single predicted class will
remain.
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Figure 4.13: Directed Acyclic Graph (DAG) of a 4-class problem. At each nale a
class is rejected until a single class remains.

This technique results in much shorter training times compaed to the One-vs-Rest
technique. Furthermore, it results in much shorter testing times compared to the One-
vs-One technique. Thus, this technique is a suitable techmjue for multi-class SVMs.

4.3 Summary

In this chapter the components that form part of the learning-based approach used in
the pose recognition and estimation methodology used in ths research were discussed.

Various techniques used in feature extraction were discussl. The Viola-Jones face de-
tection algorithm was explained. A background into skin detection techniques was pro-
vided. A discussion of the various colour spaces and skin metbs that can be used, in this
regard, were discussed. A description of the various backgund subtraction techniques
was provided. Each technique was shown to have strengths andeaknesses. These need
to be taken into account when selecting a technique suitabl¢o a speci ¢ application.
Lastly, morphological operations towards feature enhanceent were examined. Four
operations|Erosion, Dilation, Opening and Closing|were e xamined.

Subsequently, a detailed discussion of SVMs was carried ouThe discussion detailed the
theory behind classi cation technique used by SVMs. Variows kernels that can be used
were described. Finally, a comparison of the techniques udeo extend the classi cation
capability of SVMs to multi-class problems was carried out.

The next chapter describes the use of these techniques to aelve upper body pose
recognition and estimation.



Chapter 5

Design and Implementation of
the Faster Upper Body Pose
Recognition and Estimation
System

This chapter discusses the design of the faster learning-lsed pose recognition and esti-
mation system proposed in this research. At the highest leveof abstraction, the system
can be viewed as taking place in two phases, depicted in Figar5.1. The rst phase
involves the use of image processing techniques for the extion of features from an
input image sequence. The second phase involves classi ¢aim on the extracted features
using an SVM.

Sections5.1 and 5.2 describe the analysis, optimization and re-implementation of the
feature extraction phase of Achmed's algorithm. Thereafte, both the original and mod-
i ed algorithms are re-implemented using the CUDA framework on the GPU, described
in Section 5.2. Section 5.3 tables the four implementations. Section5.4 describes the
training and testing of the SVM.

Figure 5.1: Image processing for feature extraction.
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5.1 Optimization of Achmed's Upper Body Pose Recogni-
tion and Estimation Algorithm

This section discusses the optimization of the original uper body pose recognition and
estimation algorithm by Achmed. The original algorithm run s on the CPU. For reference
purposes this implementation is, henceforth, referred to a OrigCPU. The performance
of the individual components are analyzed and the optimizaions that can be made to
the individual components are stated.

Subsection5.1.1provides a description of the original algorithm. The systen is analyzed
to determine ine cient and ine ective areas of the algorith m that require optimization
in Subsection5.1.2 The analysis is used to produce a modi ed and more e cient vasion
of the algorithm in Subsection5.1.3 The modi ed algorithm is described in Subsection
5.1.4 A performance comparison between each component of Orig@Pand the modi ed
algorithm is carried out in Subsection5.1.4

5.1.1 The OrigCPU Algorithm

The OrigCPU algorithm is depicted in Figure 5.2. The face detection component is the
foundation of the feature extraction procedure and is used @ obtain the centre of the
face in the current image. The centre of the face is used for tw purposes:

1. To obtain a colour distribution that is representative of the individual's skin.

2. For normalization purposes. The individual is repositicned in the image such that
he/she is in the centre of the frame.

The nose region is positioned around the centre of the facialrame. A 10 10 pixel
area around the centre of the nose is extracted as illustrai in Figure 5.3. The Hue
values of this area are represented as a histogram, which fations as a look-up table for
skin pixel values. This method was discussed in the previoushapter. The histogram is
back-projected on to the original image to produce a greysda image in which regions
that are more likely to be skin appear brighter. As per Achmed[1] and Li's [51] work,
the result is thresholded with the value of 60 to obtain the binary skin image illustrated
in Figure 5.4.

The GMM background subtraction technique is used to highliht the moving foreground
in the current image as illustrated in Figure 5.5. The result of the background subtrac-
tion is combined with the result of the skin detection using alogical And operation.
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Figure 5.2: Original upper body pose recognition and estimation algorihm.

Figure 5.3: Face detection and nose region.
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Figure 5.4: Skin Image.

Figure 5.5: GMM background subtraction.

This technique highlights only the skin pixels that have mowed, henceforth referred to
as the moving skin image and depicted in Figures.6. Stationary pixels that were falsely
detected as skin, such as skin-coloured furniture, are elimated using this technique.
Additionally, moving objects that are non-skin-coloured are also eliminated using this
technique. The majority of noise in the image is eliminated. The feature extraction
technique is very robust.

No further processing is performed when the result of the bd@round subtraction con-
tains less than a certain number of pixels. Achmed found 7006 be the optimal number
of pixels [1].

It can be observed in Figure5.6 that the arm of the individual has rough contours and
a large holeja big discontinuity of white pixels in the arm. T he following morpholog-
ical operations are applied to remove such unwanted featusefrom the image: Erosion,
Opening and Dilation, in that order. Erosion is applied, using a 17 17 rectangu-
lar structuring element, to remove isolated noise regionsrbm the image. The rough
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Figure 5.6: The results of a skin image superimposed on the objects of iatest to
obtain the moving skin image.

Figure 5.7: Enhanced moving skin image with noise removed.

contours and any remaining noise are removed by applying Openg with a 21 21 rect-
angular structuring element. Dilation is applied to the resulting image, using a 13 13
rectangular structuring element, to produce the enhanced rhage illustrated in Figure
5.7.

The location of the face is used to normalize the moving skinmage. The normalization
process shifts the moving skin image vertically and horizotally such that the face in
the current frame is aligned with the rst facial frame in the sequence.

The normalized image is resized. The input images used havesize of 640 480 pixels.
The more pixels an image contains, the greater the amount of ekail, which in turn allows
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for more accurate extraction of features. However, trainirg a large number of features
results in very long SVM training and testing times. An image size of 640 480 amounts
to 307 200 features per image. When training on 1500 images, tatal of 460 800 000
features are obtained. An e cient way to reduce the number of features, while retaining
the essence thereof is to reduce the size of the imag?].

Each image is resized to 40 30 pixels using an external program called Convert. This
takes place by averaging every 16 16 pixels into a single pixel. The resized image
contains the feature vectors of the input image. It is written to a data le to be used by
the SVM.

This system was implemented on the CPU. In this implementaton, the entire input

image sequence is rst loaded into primary memory before thdeature extraction phase.
This is carried out to avoid the latencies associated with tansferring data between the
hard disk and memory. Also, each step in the process is exead on all cores of the CPU
using Threaded Building Blocks (TBB). Making use of these two optimizations ensures
that the CPU runs at its full capacity. This ensures that a fair comparison between the
CPU and GPU implementations is carried out in the next chapter.

5.1.2 Analysis of Individual Components

The performance of each component in OrigCPU was measured iaverage FPS. Videos
of 14 SASL signs performed by six test subjects were used asput to the OrigCPU
implementation. The test subjects had varied skin tones. Tvo subjects had light skin,
two had dark skin and the remaining two were in between. The aerage FPS of each
component, per subject, per sign, was recorded. The completset of results is provided
in Tables A.3 of Appendix A. The results are summarized in Table5.1

Referring to Table 5.1, it is clear that the face detection component is a major botle-
neck, averaging at 9 FPS. Background subtraction is also olesved to be relatively slow,
averaging at 28 FPS. Additionally, the resize component usg an external program that
continuously accesses the hard disk. Eliminating this faadr has the potential to provide
a performance speed up.

The skin detection component operates at a high speed, aveging at 201 FPS. However,
optimizing the bin width has the potential to improve the ski n detection accuracy, hence,
the overall accuracy of the system 12].
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Component FPS
Face Detection 9
Skin Detection 201

Background Subtraction 28
Morphology Operations 60
Resize 104

Table 5.1:  Analysis of OrigCPU.

5.1.3 Optimization of Individual Components

5.1.3.1 Face Detection

The face detection component in Achmed's implementation sarched for any number
of possible faces in the image. Secondly, the initial face tlection search size was set
to the size of the frame and continuously reduced until a facevas located. Using the
rst assumption set forth in Chapter 1, two optimizations can be made. It can safely
be assumed that there will only be, at most, one face in the frame and that the initial
search size will only be a fraction of the size of the frame. Té processing speed of
the Viola-Jones face detection method can be signi cantly mproved using the following
optimizations:

Ending the search when the rst face, which is the biggest fae, is detected.

Setting the initial search size to a fraction of the frame sie. Setting the initial
search size to an eighth of the frame size was found to be su @nt.

5.1.3.2 Skin Detection

The skin detection method was discussed in the previous chagr. The bin width used
to generate the histogram representing the skin colour can act the skin detection
accuracy. Similar to Tabassumet al. [93], Oliveira and Conci [66], and Almohair et
al. [5], the percentage of true positive and true negative skin pigls in a series of skin
images, resulting from the use of a varied parameter|in this case, the bin width|
was taken as the measure of skin detection accuracy. Manuakue positive and true
negative counts of skin pixels in videos of six di erent subgcts performing the SASL
sign \Away" at di erent bin widths were obtained. The bin wid ths used ranged from 4
to 32, in increments of 4.
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Bin Width Mean True Positive Count (%) Mean True Negative Count (%

4 93 15
8 90 91
12 78 96
16 64 98
20 54 98
24 51 98
28 44 98
32 40 98

Table 5.2: Summary of skin detection accuracy results at di erent bin widths.

Tables A.1 and A.2 in Appendix A contain the complete set of percentage true positive
and true negative counts obtained at each bin width for each gbject. These results are
summarized in Table 5.2

It can be observed in Table5.2 that as the bin width increases the true positive count
appears to decrease. It appears that the detection of true sk pixels deteriorates as the
bin width increases. A similar but opposite e ect is observal with the true negative
count. It can be seen that the true negative count increasessathe bin width increases,
but seems to stabilize at a bin width of around 12, at which thetrue negative count
does not have any notable increase.

This trend can be attributed to the fact that using a higher bi n width causes a greater
range of pixel values to be grouped into fewer bins|a signi c ant loss of detail [L2]. An
increasing loss of detail eliminates an increasing amountfaoise in the image, which is
potentially limited and small to begin with, until it reache s the point where very little
noise exists and thus no notable change in the true negativeate. On the other hand, an
increasing amount of abundantly available actual skin pixés continue to be eliminated
from the image as detail is lost. The optimization of the bin width strives to achieve a
balance between the detection of actual skin pixels and elimation of the noise pixels.

A bin width of 8 registers the highest combination of the true positive and true negative
skin detection count. A bin width of 8 was used as the bin width of the modi ed skin
detection component. It is expected that the optimized skin detection component will
help produce more enhanced features in frames with a largemaount of exposed moving
skin. Motions of the arms in the plane of the captured frame ae easily observable. Such
movements expose large amounts of moving skin. These skingiens can be highlighted
more accurately by the optimized skin detection component.Fewer noise pixels will be
highlighted. On the other hand, the fact that depth informat ion is not provided by the
camera in the setup implies that movements of the arms toward and away from the
camera may not be observable, appearing as a slow scaling dfe object at best. Such



Chapter 5. Design and Implementation of the Upper Body Pose Recognitioand
Estimation System 61

movements may lead to the concealment of moving skin regionsThe optimized skin
detection component may not improve the detection accuracyof skin in such frames
beyond that of the original skin detection component.

Examples of signs with a large amount of exposed moving skirra \curtains" and \wide".
The sign "curtains” is performed in SASL by lifting both hand s above the shoulders and
moving them inward and outward in a waving motion in the plane of the frame. The
sign "wide" is performed in SASL by lifting both arms, outstr etched, up the sides body
in the plane of the frame to form a "T' shape with the arms and baly.

An example of a sign with a small amount of exposed moving skins \run". The sign
\run" is performed in SASL by simulating the movement of the arms during running.
Most of the motion takes place towards and away from the came.

5.1.3.3 Background Subtraction

GMMs are used in OrigCPU for background subtraction. GMMs wee discussed in detail
in Chapter 4. They are robust and provide information about the location of moving
objects in the frame as well as the intensity of their motion. However, this comes at
the expense of performance. The intensity of motion does noform part of the feature

vectors used in the classi cation phase in Achmed's algoritm. Only the information on

the location of moving objects is used. Therefore, the use dhis technique is wasteful
of processing speed.

Alternative background subtraction techniques were discissed in Chapter4 and a com-
parison of these techniques was performed. Based on the dission, a background
subtraction technique that is better suited to Achmed's algorithm is frame di erencing.
Frame di erencing provides information on the location of moving objects at a much
higher processing speed than GMMs. It is also more robust to aynamic background
than simple background subtraction techniques.

Frame di erencing was implemented as the background subtration technique in the
modi ed upper body pose recognition and estimation system.

5.1.3.4 Resizing the Image

An external image resizing program called Convert is used taesize the image after
morphological operations have been applied in Achmed's imlpmentation. This program
resizes the image with minimal loss in detail by resampling he image using the pixel
area relation method. In order to use the program, the images required to be written



Chapter 5. Design and Implementation of the Upper Body Pose Recognitioand

Estimation System 62
Component OrigCPU FPS ModCPU FPS Speed-Up Factor
Face Detection 9 105 11
Skin Detection 201 200 1
Background Subtraction 28 372 13
Morphological Operations 60 60 1
Resize 104 1691 16

Table 5.3: Performance analysis of OrigCPU and ModCPU.

to the hard disk. The program is executed to resize the imageThe result then has to
be loaded back into memory to be used by the rest of the algoritm. The transfer of
data between memory and the hard disk is a major source of latecies p4].

A more e cient method of resizing the image is the use of Open(/'s native resize
function. This function can be passed appropriate parametes to perform the same
operation as Convert [L2][resampling the image using the pixel area relation method.
The use of this method is expected to drastically reduce latecies resulting in a much
higher processing speed.

OpenCV's native resize function was implemented for the reiging of the image after
morphological operations have been applied.

5.1.4 Modied Upper Body Pose Recognition and Estimation Sy stem

This subsection discusses the modi ed upper body pose recoijion and estimation sys-
tem, henceforth referred to as ModCPU. The modi ed algorithm is depicted in Figure
5.8. It can be observed from the gure that the optimized components discussed in the
previous subsection are used.

A performance comparison was carried out between OrigCPU ahModCPU to assess the
e ectiveness of the optimizations made. Identical to the aralysis of OrigCPU, described
in Section 5.1.2, the performance of each component in ModCPU was measured in
average FPS. The same videos were used as input to the ModCPlthplementation. The
average FPS of each component, per subject, per sign, was meded. The complete set of
results is provided in TablesA.3 and A.4 of Appendix A. The results of the test for both
OrigCPU and ModCPU, along with the ratio of the ModCPU to Orig CPU performance
for each component|the speed up factorlare summarized in Ta ble 5.3. It is to be
noted that a speed-up factor of more than 1 indicates an imprgement in processing
speed and the higher the speed-up factor, the more substati the improvement in the
processing speed. A speed-up factor of less than 1 indicatadoss in processing speed.
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Figure 5.8: Modi ed upper body pose recognition and estimation algorithm.

It is clear from Table 5.3 that the face, skin and resize components of ModCPU are
considerably faster than those in OrigCPU. Each of these optized components perform
no less than 11 times faster than its original counterpart, lut as high as 16 times faster.
As per expectation, the skin component, which was optimizedor greater accuracy, does
not register an increase in processing speed. The morpholiegl operations component
also registers no increase in processing speed.

A test was carried out to determine whether the di erence between the performance of
each component of OrigCPU and ModCPU was signi cant. A serie of paired t-tests
were conducted to examine di erence between OrigCPU and Mo@PU for each sign.
The results of these tests are summarized in Tabl®.4.

It is clear from Table 5.4 that the face, skin and resize components of ModCPU are
signi cantly faster (p < 0:0001 in every case) than those in OrigCPU for every sign.
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Sign Face Background Skin Morphological Resize
Std Dev  P-Value Std Dev  P-Value Std Dev  P-Value Std Dev  P-Value Std Dev  P-Value
Away 2.6903 < 0:0001 8.8524 < 0:0001 16.4963 0.9032 2.5172 0.6165 12.3194< 0:0001
Bye 2.5130 < 0:0001 17.7000 < 0:0001 11.6844 0.1511 3.3278 0.3563 9.4283 < 0:0001
Cracker 2.5413 < 0:0001 9.6446 < 0:0001 7.3299 0.0190 2.2335 0.8581 12.5945< 0:0001
Curtains 3.3241 < 0:0001 10.5142 < 0:0001 17.7582 0.2606 2.0843 0.3637 10.7811< 0:0001
Dress 1.8380 < 0:0001 14.1372 < 0:0001 10.3874 0.3275 4.8867 0.4377 14.0467< 0:0001
Eat 3.3333 < 0:0001 124968 < 0:0001  16.0963 0.3162 3.1502 0.6171 13.8320< 0:0001
Left 2.2430 < 0:0001 12.3901 < 0:0001 10.1392 0.9016 1.8721 0.0544 12.7285< 0:0001
Light 3.2342 < 0:0001 12.0148 < 0:0001 27.2046 0.8759 4.4227 0.3569 9.9330 < 0:0001
Love 2.8901 < 0:0001 12.1828 < 0:0001  16.9674 0.6540 2.9405 0.1846 13.5952< 0:0001
Right 2.9891 < 0:0001 11.1133 < 0:0001 21.8679 0.4984 4.0816 0.1244 12.4866< 0:0001
Run 1.8573 < 0:0001 10.5980 < 0:0001  20.8965 0.6409 5.2603 0.7827 7.5917 < 0:0001
We 3.0816 < 0:0001 13.7493 < 0:0001 19.9982 0.6465 1.8803 0.0025 11.0711< 0:0001
Why 2.6238 < 0:0001 15.0753 < 0:0001 16.9896 0.1709 4.6262 0.6317 4.6670 < 0:0001
Wide 2.0139 < 0:0001 12.1682 < 0:0001 11.4122 0.6338 2.3640 0.4485 13.1319< 0:0001
Table 5.4: Performance analysis of OrigCPU and ModCPU for each compon.

The performance optimizations made to these components werappropriate and highly
successful.

As per expectation, the di erence in performance between OgCPU and ModCPU for
the skin and morphological operations components is not sig cant.

5.2 Performance Enhancement Using CUDA

Both OrigCPU and ModCPU were re-implemented on the CUDA framework. The
resulting implementations run on the GPU and are, henceforh, referred to as OrigCUDA
and ModCUDA, respectively. The algorithms were ported to the GPU as follows:

1. Athread was assigned to each Haar cascade in the face detien component. This
enables the face detection method to search multiple imageestions for faces in
parallel.

2. Background subtraction and face detection were con guré to run simultaneously
on separate parallel threads.

3. During background subtraction, each pixel in the current image and reference
image was assigned a separate thread. The absolute di ereacs taken between
the all the corresponding pixels of the current image and redrence image in parallel.

4. Skin detection, similar to Background subtraction, had athread assigned to each
pixel. All pixels are processed in parallel.

5. The process of combining the background subtraction andlsn detection compo-
nents to produce the moving skin image was similarly parallézed by assigning
each pixel of the respective components to a separate thread
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Implementation Description
OrigCPU Achmed's algorithm, running on the CPU.
ModCPU The modi ed algorithm, running on the CPU.
OrigCUDA Achmed's algorithm, running on the GPU.
ModCUDA The modi ed algorithm, running on the GPU.

Table 5.5: Summary of Implementations.

Additionally, the resize component of ModCUDA was paralleized. This was done by
assigning a separate thread to each pixel of the image. Eaclhtead averages the 16 16
pixels in its vicinity in parallel. It was not possible to port the resize component of
OrigCUDA as it uses an external program.

5.3 Summary of Implementations

The four implementations of the upper body pose recognitionand estimation system
are summarized in Table5.5.

5.4 Training and Testing Phases

Subsection5.4.1 discusses the procedure used to train the SVM. The trained SM is
used to predict the correct location of the wrists and estimae the performed sign using
Blender in the testing phase described in Subsectiob.4.2

5.4.1 Training Phase

The training set consisted of two individuals, male and femé#, performing 14 SASL
signs described in Table5.6. These signs are the same signs used by Achmed.

The procedure used to train the SVM is depicted in Figure5.9.

Each frame of each video in the training set was processed ugj the entire feature
extraction procedure mentioned previously. Starting with each image of size 40 30
pixels, resulting from the feature extraction procedure, adata le is created consisting
of the pixel values of the image. Each pixel in the image is take as a feature vector
and is assigned an index, as illustrated in Figure5.10. An image of size 40 30 pixels
contains a total of 1200 feature vectors. Referring to Figue 5.10 the rst feature vector,
in this case, has an index of 1 and a value of 0. The last featureector has an index of
1200 and a value of 1.
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Sign Description

Away Move the right hand to and fro away from right side of the
body.

Bye Waving with the right hand inwards to the left and outwards
to the right above right shoulder.

Cracker | Moving hands from the chest away from each other to the
sides.

Curtains | Moving both hands towards the face and outwards again
above respective shoulders.

Dress Moving hands from the chest downwards. When reaching
below the hips, move hands away from the body.

Eat Moving both hands towards the mouth and mimic eating
using chopsticks.

Left Raise left hand away from the left side of the body.

Light Raise right hand above right shoulder just above the head.

Love Cross arms in the middle of the upper chest.

Right Raise right hand away from the right side of the body.

Run Moving both hands on the side of the chest imitating a run-
ning movement.

We Move right hand to the left side of the chest and across to
the right shoulder.

Why Move right hand to the left side of the chest and tap twice
against chest.

Wide Raise right and left hand away from the sides of the body.

Table 5.6: The 14 SASL signs used in training and testing.

A label is assigned to each set of 1200 feature vectors, whigmoups the resulting features
of that frame into a speci ¢ training class and indicates the position of both wrists in
that frame. The positions of both wrists need to be identi ed. A structured method of
assigning a label to the position of each wrist is to superimpse a grid on the training
image. The grid consists of 168 equally sized squares and &g the entire pose space
as illustrated Figure 5.11

Each square is a quarter of the size of the face. The number ofldicks is limited to only
cover the pose space. Each block is assigned to a class in th&Ns and is assigned to
a set of feature vectors if the wrist is observed to be in that lbock. This yields a total
of 168 classes. The top-left block is assigned the label 1,dreasing towards the right
and downwards, with the bottom-right block being assigned e label 168. In Figure
5.11, the wrist of the right hand is observed in block 32, as indicéed by the cross, and
is therefore assigned label 32. Both wrists are assigned ablal.

Data scaling is another form of preparation of data for the SW. Scaling the data avoids
features with a greater numeric range from dominating featues with a lower numeric
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Figure 5.9: Procedure used to train the system.

Figure 5.10: Data le without labels.
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Figure 5.11: Superimposed grid in pose space.

range [36]. Thus, a pixel with a value of 255 is converted to 1 and a pixelwith a value
of 0 is left unchanged. This limits the range of feature vectes to [0,1].

The SVM can be trained to predict test data more e ectively by determining the optimal

C and RBF kernel parameters for the given problem. A brute-force gproach that

can be used is the trial and error of eachiC and combination, where each parameter
is an exponentially growing sequence. A structured alternve uses the grid-search
function in LibSVM, which uses cross-validation. The crossvalidation method divides

the training set into n equally-sized subsets, where the classier is trained om 1

subsets and tested on the remaining subset for each parameteombination [35]. This

highlights the combination of parameters with the best cros-validation accuracy.

The result of running the LibSVM grid-search function on the training data is depicted

in Figure 5.12 The optimum parameters obtained were as followsC was 512 and was
0.000122. The accuracy rate of the kernel was optimized fror8B8% before optimization
to 91% after optimization. The small di erence between the two accuracy rates indicates
that a high accuracy can be achieved with the RBF kernel even whout optimization.

The nal format of the training data le is illustrated in Fig ure 5.13 Each line of the
le consists of: the class representing the right-hand wrig the class representing the
left-hand wrist; and the list of feature vectors. Figure 5.13 depicts two lists of feature
vectors. The rst list represents the right-hand wrist in bl ock 134 and the left-hand
wrist in block 132. The second list represents the right-had wrist in block 132 and the
left-hand wrist in block 138.
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Figure 5.12: Grid-search optimization results.

Figure 5.13: Data le with labels in the training phase.

5.4.2 Testing Phase

The testing phase aims to predict the wrist position labels gven a set of feature vectors.
The predicted labels are used to estimate the upper body pose This procedure is
illustrated in Figure 5.14.

For each frame in a test video, the exact procedure used to genate the data le in
the training phase is applied, except that the list of feature vectors is assigned default
labels of 0. This is illustrated in Figure 5.15 The SVM is expected to predict the actual
labels, which indicate the location of the right-hand and Idt-hand wrists.

The system uses the 3D humanoid model by Van Wyk10(. The model was developed
and runs in the 3D modelling software called Blender. The pogions of the wrists of
the 3D humanoid model are set to the corresponding locationsf the predicted labels.
Human-realistic kinematic constraints are used to automaitcally position all other joints
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Figure 5.14: Procedure used in the testing phase.

Figure 5.15: Data le with labels in the testing phase.
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relative to the position of the wrists in a manner that is feagble and realistic. The
system, thus, estimates the upper body pose in 3D.

The estimated upper body pose in each frame is set as a key framn a Blender ani-
mation. A particularly useful feature in Blender is that key -frames can be dynamically
created. Once all the key-frames have been created, Blendautomatically interpolates
between key-frames. This ensures that there are no discomtilities in the nal estimated
animation of upper body poses. Figure5.16 illustrates the estimated result of the rst
6 frames of the SASL sign "Curtains".

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 5.16: 3D estimated upper body pose sequence for the sign "Curtairis

5.5 Summary

This chapter discussed the implementation of the faster uppr body pose recognition
and estimation system. An analysis, optimization and re-inplementation of the feature
extraction phase of Achmed's algorithm was carried out. Theanalysis was used to deter-
mine areas of the algorithm where the e ciency and e ectiveness could be signi cantly
increased. The optimizations were implemented to produce anodi ed and more e -
cient version of the algorithm. A performance comparison btween each component of
the original and the modi ed algorithm was carried out. The comparison revealed that
the three optimizations aimed at improving performance wee highly successful. There-
after, both the original and modi ed algorithms were re-implemented using the CUDA
framework on the GPU. The above procedure yielded four implmentations which are
to be compared in the next chapter.
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The classi cation phase used the extracted features for thdraining and testing of the

SVM. Before training the SVM, the data obtained from the extracted features were
scaled, labels were assigned to the set of feature vectorsdthe optimal kernel parame-
ters were determined using a grid-search function. The traied SVM was used to predict
the correct label corresponding to the location of the wrisk to estimate the performed
sign using Blender.



Chapter 6

Experimental Setup and Analysis
of Results

This chapter assesses the four implementations of the fasteipper body pose recognition
and estimation system to determine whether the research olectives set out in Chapter
1 have been achieved. The objectives set out were to achieve aal-time performance
at a sustained or improved accuracy.

Section 6.1 describes the setup of the experiments carried out, includig the data set
collected and used. Sectiorb.2 describes the testing carried out to determine whether
each of the four implementations meet the accuracy criteria mentioned. A comparison
in accuracy is carried out. Section6.3 describes the testing carried out to determine
whether the performance criterion was met by the four implenentations. The experi-
mental procedure and metrics used are discussed in both caseA comparison between
the four implementations was carried out in each case. A sumiry of the results and
the conclusions drawn from these results close the chapter.

6.1 Experimental Setup

All experiments were carried out on a PC containing an Intel i7 2600k 3.8 GHz quad
core CPU, an NVIDIA 580GTX GPU and 8 GB RAM, running the Kubunt u 12.04 x64
operating system. A Logitech C910 web camera was used at a mstion of 640 480
pixels at a frame rate of 15 FPS. The same 14 SASL signs used bycAmed were used
in experimentation. Figure 6.1 depicts the location where the web camera was used
to capture 14 SASL signs. 30 test subjects, each performinghe 14 SASL signs are
henceforth labelled as Subject 1{30. The test subjects werehosen such that a wide
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Sign Description

Away Move the right hand to and fro away from right side of the
body.

Bye Waving with the right hand inwards to the left and outwards
to the right above right shoulder.

Cracker | Moving hands from the chest away from each other to the
sides.

Curtains | Moving both hands towards the face and outwards again
above respective shoulders.

Dress Moving hands from the chest downwards. When reaching
below the hips, move hands away from the body.

Eat Moving both hands towards the mouth and mimic eating
using chopsticks.

Left Raise left hand away from the left side of the body.

Light Raise right hand above right shoulder just above the head.

Love Cross arms in the middle of the upper chest.

Right Raise right hand away from the right side of the body.

Run Moving both hands on the side of the chest imitating a run-
ning movement.

We Move right hand to the left side of the chest and across to
the right shoulder.

Why Move right hand to the left side of the chest and tap twice
against chest.

Wide Raise right and left hand away from the sides of the body.

Table 6.1: The 14 SASL signs used in experimentation.

variety of skin colours ranging from white to black were repesented. Nine of the subjects

were females and the rest were males.

6.1.1 Data Set

No standard set of SASL poses exists upon which experimenti@in can be based. SASL

consists of various poses each conveying a di erent meaningnd each being equally

important. As the proposed system is a subset of an automatisign language translation

system, it is important that the signs that are performed can be recognized as o cial
SASL signs. Achmed chose 14 SASL signs from the \Fulton Schbdor the Deaf" SASL
Dictionary [ 34]. The chosen signs do not cover the entire sign language vdaalary, but

e ort was made to cover the vocabulary to a large extent. The $gns performed represent

a variety of wrist locations, with signs performed on the farleft and far right of the body

well represented. Table6.1 provides a description of each of the 14 signs. Each SASL

sign is depicted by a random frame in Figure6.1.
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(a) Away (b) Bye (c) Cracker
(d) Curtains (e) Dress (f) Eat
(9) Left (h) Light (i) Love
(i) Right (k) Run () We
(m) Why (n) Wide

Figure 6.1: The 14 SASL signs used in experimentation.

6.1.2 Collection of Videos

Each subject was required to stand facing towards the camera such a way that his/her
upper body and hands were in the frame. The subjects were inaicted to move their
arms according to the required sign, which was shown to them ior to them performing
the sign. Each subject performed 14 signs at their preferrednotion speed and a 3
second time period was given to them to rst prepare themseles before the frames were
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recorded. Using 30 subjects resulted in a total of 420 sign #ieos consisting of a variable
number of frames, ranging from 51 to 161.

6.2 Accuracy Testing

This section describes the tests that aimed to compare the awracy of the four im-
plementations. The aim of the comparison was to determine whther an improved or
sustained accuracy was achieved by the modi ed algorithm inaccordance with the re-
search question. The following subsections discuss the terion for a correctly recognized
sign, used as a metric for accuracy testing, followed by the qocedure used to conduct
the experiments and the accuracy test results and analysis.

6.2.1 Criterion for a Correctly Recognized Sign

Each input frame maps onto an estimated output frame in Blender. The estimated
frame is generated by setting the positions of the wrists of he 3D humanoid avatar
to the wrist positions predicted from the frame. There are maly ways to measure the
correctness of the estimated result such as performing a cgmarison of the joint angles
and/or positions between the input and estimated frames. Analternative method is to
perform a visual comparison between the input and estimatedrames.

A point that becomes relevant in deciding between these methds is to consider the goal
of the SASL project, which is the translation between SASL toEnglish. The project is
intended to create animations to be viewed by human beings. Terefore, it is considered
su cient for a visual comparison to indicate whether a match has been obtained. The
estimated outcome is dichotomized as either being a match anon-match on a per-frame
basis. Figure6.2 illustrates a potential match.

(a) Input frame (b) Estimated frame

Figure 6.2: Visual comparison for a potential match.
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Assessor | Signs
Assessor 1| Bye, Curtains, Eat, Light, Right, We, Wide
Assessor 2| Away, Crackers, Dress, Left, Love, Run, We, Wide

Table 6.2: Signs inspected by the assessors.

6.2.2 Experimental Procedure

The 420 sign videos from the 30 test subjects were used as inpto the four imple-

mentations. In each case, the output of the system was analyd using the criterion
for a correctly recognized sign. In order to obtain an unbiasd result two independent
assessors were used to perform the visual comparisons. Tal$.2 identi es the signs
that were assessed by each assessor. Each assessor wasuntd to inspect every input
frame and the corresponding estimated frame and determine hether there was a match
between the frames.

Table A.5 in Appendix A contains the total number of frames in each sign video per-
formed by each subject.

The complete set of results of the number of matches for OrigeU and ModCPU are
provided in Tables A.6 and A.7, respectively, in Appendix A. It was found that both
implementations running the original algorithm|OrigCPU a nd OrigCUDAJand both
implementations running the modi ed algorithm|ModCPU and ModCUDA|achieved
exactly the same results. For this reason, these results havbeen omitted. The com-
parison of accuracies is, therefore, carried out between #horiginal algorithm and the
modi ed algorithm, referred to as \Orig" and \Mod" for the pu rposes of the current
experiment. Table 6.3 depicts the average number of matches for each sign, acrost a
test subjects, as a percentage of the total number of frameshieach case.

Analyzing Table 6.3, the accuracies range from 78.72% to 93.71% for Orig and 83.% to
97.33% for Mod. Overall Mod achieves a higher average accurp of 93.08% compared
to 87.35% for Orig.

A statistical test was used to determine whether the dierence in accuracy between
Orig and Mod for each sign was signi cant. The accuracy valus are bounded above
by 100 and the values are skewed for most of the signs. For thiseason, the non-
parametric Signed Rank Test was identied as being approprate to use to test for

signi cant di erences between the algorithms. Table 6.4 summarizes the results of the
test. It can be seen from the table that there are signi cant di erences in favour of Mod

(p < 0:001) for 9 out of the 14 signs, highlighted in the table. The acuracy of Mod for

the remaining 5 signs is no less than that of Orig.
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Sign Orig(%) Mod(%)
Away 90.15 90.41
Bye 87.46 97.33
Crackers 78.72 84.07
Curtains 85.54 95.66
Dress 89.29 90.66
Eat 90.54 95.05
Left 89.69 98.80
Light 92.72 95.82
Love 93.71 93.05
Right 85.23 96.17
Run 83.92 83.61
We 87.39 90.69
Why 82.60 94.68
Wide 85.93 97.10
Average 87.35 93.08

Table 6.3: Mean accuracy of the original and modi ed algorithms per siq.

The observation that 9 out of the 14 signs register signi cart increases in accuracy with
the modi ed algorithm and the remaining 5 do not is attribute d to the di erences in the
amount of exposed skin between the two groups of signs. The $gsis that perform better
all expose larger amounts of moving skin. The majority of themotion in the remaining
5 signs occurs towards and away from the camera, therefore pgsing small amounts of
moving skin. As expected and explained in the previous chagr, signs that expose larger
amounts of moving skin are expected to achieve a higher accacy due to the optimized
skin detection component. However, the frame di erencing fackground subtraction
technique was chosen over GMMs. Therefore, more tests need be conducted to further
investigate the components that improve the accuracy.

Table 6.5 depicts the average number of matches for each test subjecacross all signs,
as a percentage of the total number of frames in each case. Alyaing Table 6.5, the
accuracies range from 84.45% to 90.86% for Orig and 87.89% 89.60% for Mod. The
standard deviation in these results for Orig and Mod is 1.81%and 2.94%, respectively.
These values are very small and indicate that both algorithns are robust to variations
in test subjects.

In conclusion, the accuracy of the modi ed algorithm is at least as high as the original
algorithm, although signi cantly higher in 65% of the signs. It is also as robust to

variations in test subjects as the original algorithm. This result is extremely encouraging
and shows that the optimizations made were appropriate and gccessful. The accuracy
of the original algorithm, which was very high, has been impoved signi cantly.
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Sign Test Statistic P-Value

Away 0:5 1:0000
Bye 2155 < 0:0001
Cracker 1365 0:0017
Curtains 2005 < 0:0001
Dress 41 03599
Eat 1595 0:0001
Left 201 < 0:0001
Light 1345 0:0038
Love 1 09814
Right 1985 < 0:0001
Run 9:5 0:8489
We 545 0:2453
Why 2205 < 0:0001
Wide 2125 < 0:0001

Table 6.4: Results of the Signed Rank Test performed between the origal and
modi ed algorithms.

6.3 Performance Testing

This section describes the tests that attempted to answer tle remaining section of the
research question: can optimization and parallel processg techniques on the CUDA
framework be used to achieve real-time upper body pose recoigion and estimation

based on Achmed's methodology? The following subsectionsedcribe the criterion for
real-time performance, the experimental procedure and angsis of results of the perfor-
mance testing.

6.3.1 Ciriterion for Real-Time Performance

This system aims to render estimated frames in real-time. Fo this to appear to be
real-time to the user it must render frames at 15 FPS. Therefoe, the system must be
able to process input frames at 15 FPS.

Therefore, the criterion for real-time performance is a praessing speed of at least 15
FPS.

6.3.2 Experimental Procedure

The 420 sign videos from the 30 test subjects were used as inpto the four implemen-
tations. The system was modi ed to measure the time it took to process each frame and
write the measured values to a text le, iteratively for all 4 20 sign videos. The values
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Test Subject Orig Mod

Subject 1 90.76 92.31
Subject 2 88.14 92.63
Subject 3 89.83 97.26
Subject 4 87.48 90.35
Subject 5 88.22 91.35
Subject 6 86.81 91.68
Subject 7 90.86 93.65
Subject 8 85.04 92.85
Subject 9 88.03 90.12
Subject 10 84.45 91.63
Subject 11 89.72 88.84
Subject 12 87.47 92.07
Subject 13 89.19 091.22
Subject 14 85.97 91.81
Subject 15 85.88 91.81
Subject 16 87.19 95.17
Subject 17 85.48 98.68
Subject 18 86.32 98.66
Subject 19 90.75 99.60
Subject 20 88.19 93.58
Subject 21 87.08 96.28
Subject 22 88.07 96.26
Subject 23 85.40 95.55
Subject 24 88.13 92.13
Subject 25 86.09 92.96
Subject 26 86.16 90.68
Subject 27 86.08 89.74
Subject 28 85.64 91.65
Subject 29 87.17 87.89
Subject 30 84.84 93.92

Table 6.5: Mean accuracy of the original and modi ed algorithms per tes subject.

written to the text le were obtained as follows: the time tak en to process each frame
was inverted to obtain the processing speed in FPS at that frane|the instantaneous
processing speed. This procedure was repeated for all 42@sivideos using each of the
four implementations.
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Figure 6.3: Comparison in mean performance of the 4 implementations.

6.3.3 Results and Analysis

Figure 6.3 is a graphical representation of the overall mean performace. It is clearly
evident from the graph that ModCUDA has the highest performance out of all four imple-
mentations. It is approximately 5 times faster than the slowest performing implementation|
OrigCPUJand approximately 1.5 times faster than the second fastest implementation|
OrigCUDA.. Three out of four implementations pass the criterion for real-time perfor-
mance. They achieve a mean processing speed of at least 15 FmMBdCUDA achieves
a processing speed that is approximately double the requireent. The remaining two
operate at, or slightly above, the required processing spee OrigCPU fails this require-
ment, operating at a mean processing speed of approximatel§ FPS.

Table 6.6 summarizes the mean performance of all implementations, pesign, over all
subjects. The performance ranges of the implementations ar5.90 to 6.41 for OrigCPU,
15.12 to 16.12 for ModCPU, 18.62 to 19.57 for OrigCUDA and 27.3 to 31.75 for Mod-
CUDA.

A repeated measures analysis of variance was carried out toompare the processing
speed of the four implementations, the results of which are ammarized in Table 6.7.
There are di erences in the variability of the performance d the di erent methods. This
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sign ] OrigCPU \ ModCPU | OrigCUDA | ModCUDA
\ Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Away 6.08 1.70 15.12 3.12 18.62 2.13 28.79 5.98
Bye 5.90 1.61 16.47 2.90 19.15 2.39 30.83 7.22
Crackers 5.82 1.57 15.50 3.28 18.89 2.44 31.75 6.86
Curtains 6.41 151 16.43 3.24 19.36 2.22 30.08 6.96
Dress 5.93 1.65 16.45 2.84 18.93 1.86 29.88 6.86
Eat 5.96 1.52 15.75 3.20 19.20 2.36 30.31 6.17
Left 5.83 1.49 15.73 3.23 19.23 2.53 30.53 6.68
Light 6.18 1.32 16.26 3.49 19.04 2.21 29.00 6.54
Love 6.36 1.62 15.68 2.92 19.57 2.37 27.13 5.04
Right 6.16 1.55 16.29 3.33 18.69 2.19 29.14 6.17
Run 6.39 1.59 15.76 3.39 18.92 2.29 30.01 6.67
We 6.13 145 15.80 3.48 19.63 2.30 29.10 6.69
Why 6.39 1.42 16.52 251 19.03 2.43 29.62 5.27
Wide 5.93 1.54 16.40 2.67 19.00 2.32 28.88 6.23
Average 6.10 16.01 19.09 29.65

Table 6.6: Mean performance of all implementations, per sign, over alsubjects.

Implementation Estimate Z-Error Value Pr>2z

ModCUDA 41.11 2.84 14.46 < 0:0001
OrigCUDA 5.19 0.36 14.37 < 0:0001
ModCPU 9.69 0.67 14.42 < 0:0001
OrigCPU 2.37 0.17 14.16 < 0:0001

Table 6.7: Results of the repeated measures analysis performed amonpet four im-
plementations.

variability was accounted for in the analysis. The results $iow that each implementa-
tion is signi cantly di erent ( p < 0:0001) from all of the others. It can be stated with
con dence that the descending order of performance is: ModODA ! OrigCUDA !
ModCPU ! OrigCPU. Therefore, the use of the CUDA framework and paralkl pro-
cessing techniques had the most signi cant impact on procesng speed, since the two
implementations that used these techniques had the highesperformance. This shows
that the use of the CUDA framework, alone, is e ective in providing an increase in pro-
cessing speed. Following this are the optimizations made, ith the two implementations
that were optimized performing better than the original algorithms.

The results of the repeated measures analysis of variancesal indicate that there is
no signi cant di erence among the signs, wherep = 0:85. This shows that while the
performance of every implementation is signi cantly di er ent, there is a low standard
deviation amongst all the signs.

In terms of di erences among test subjects, the random e ecs test was conducted, the
results of which are summarized in Table6.8. The estimated random e ects for di erent
test subjects range from approximately -0.03 to +0.03. Thes values are insigni cant
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Mean Std Dev  Minimum Maximum
1:8737%-15 0.02 -0.03 0.03

Table 6.8: Estimated random e ects for test subjects.

relative to the overall mean performances, which are in the icinity of 6 FPS for OrigCPU
and 30 FPS for ModCUDA.

It has been shown that three of the four implementations obtan or exceed a mean
processing speed of 15 FPS. This indicates that the three imipmentations generally
operate in real-time. However, this does not provide an indiation of whether or not the
system operates at 15 FPS at every instant. Falling below thé value|15 FPS|at any
time during processing causes a backlog of frames that reqe processing. This causes
the system to appear unresponsive to the user at that time.

As an example, consider the case where 10 seconds of video eaptured from the camera
and processed. If the system processes the rst 5 seconds tietvideo at a constant rate
of 10 FPS and the remaining 5 seconds of the video at a constamate of 20 FPS, the
mean processing speed indicates a real-time performance® FPS. This indicates that,
on average, the system was responsive. However, during thest 5 seconds, a backlog
of 5 frames accumulates every second, a total of 25 frames. €hresponsiveness of the
system su ers during this period. In such cases, the minimuminstantaneous processing
speed provides an accurate indication of whether or not the ystem has performed in
real-time over the entire duration of processing.

Figure 6.4 illustrates the speed at which the slowest frame was procesd|the mini-
mum instantaneous processing speed|per sign across all sujects. Obtaining this value
involved collecting the frames of all subjects for each sigrand comparing the speed
at which each individual frame was processed. The frame whitwas processed at the
slowest speed was taken as the minimum instantaneous speethe red line in the gure
indicates the minimum required processing speed of 15 FPS \idh is necessary to ensure
real-time performance.

It can be observed that the only implementation that consistently achieves a minimum
FPS of at least 15 FPS is ModCUDA. In fact, ModCUDA achieves a nminimum speed
which is higher than the requirement|approximately 19 FPS. All other implementa-
tions fail this criterion for real-time performance. OrigCPU, ModCPU and OrigCUDA
achieve a minimum instantaneous processing speed of apprioxately 2, 6 and 11 FPS,
respectively. To put this into perspective, it should be corsidered that operating at 2
FPS means that a backlog of 13 out of the 15 frames read in evergecond|87% of
the frameslis accumulated. OrigCUDA accumulates the least backlog of frames among
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Figure 6.4: Minimum instantaneous processing speed of the four implenmations.

the three implementations, but still accumulates a backlogof 4 frames per second while
operating at this speed. ModCUDA does not su er from any backog of unprocessed
frames.

Therefore, the only implementation that achieves real-time performance is ModCUDA.

6.4 Summary and Conclusion

This chapter assessed the four implementations of the promed upper body pose recog-
nition and estimation system. The experimental setup, the data set and the collection

of the videos was discussed. The two types of testing conduetl were accuracy testing
and performance testing. The experimental procedure and ntecs used were discussed
in both cases.

In accuracy testing, a comparison was made between the the iginal algorithm and the
modi ed algorithm. On average the modi ed algorithm achieved a 6% better accuracy
than the original algorithm. In performance testing, comparisons were made amongst
the four implementations.
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It was found that the accuracy of the two modi ed implementat ions, ModCPU and Mod-
CUDA, and the two original implementation, OrigCPU and Orig CUDA, were identical.
The modi ed algorithm was found to perform signi cantly bet ter than the original algo-
rithm in 9 of the 14 signs|an improved accuracy. In the remain ing signs, the accuracy
of the modi ed algorithm was no di erent to that of the origin al algorithm|a sustained
accuracy. Both algorithms were found to be robust to variations in test subjects.

With regards to performance, 3 out of the 4 implementations &hieved a mean pro-
cessing speed above the 15 FPS requirement. OrigCPU failedhis requirement. Mod-
CUDA achieved the highest mean processing speed, which wap@roximately double
the requirement and 5 times higher than OrigCPU. This is a sigui cant and extremely
successful increase in processing speed over Achmed's or@ implementation. Further-
more, only ModCUDA achieved a minimum instantaneous procesing speed above the
15 FPS requirement. It achieved a minimum instantaneous proessing speed well above
the requirement|approximately 19 FPS. This is also an extre mely successful increase
in processing speed over Achmed's original implementationAll three other implemen-
tations failed this requirement. Only ModCUDA satis es the requirement of real-time
performance.

The results showed that the use of both parallel processingechniques on the CUDA
framework and optimization of Achmed's algorithm are e ective in achieving increases
in processing speed. It was shown that the use of both parallgprocessing techniques on
the CUDA framework was more e ective than the optimizations made to the original

algorithm in speeding up the system. However, a combinatiorf both of these techniques
was necessary in order to achieve real-time performance.

Therefore, in response to the research question posed in Cpier 1, it can be concluded
that optimization and parallel processing techniques on tle CUDA framework are highly
e ective in increasing the processing speed of Achmed's mbbdology to achieve real-
time performance at an improved estimation accuracy in 65% bthe signs tested, and a
sustained estimation accuracy in the remaining 35% of the gins tested.
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Conclusion

This research has made several crucial contributions to theeld of sign language recog-
nition and estimation.

The most signi cant contribution was the provision of parallel processing techniques
and CUDA support to achieve a truly real-time upper body poserecognition and esti-
mation system. It was shown de nitively that the use of parallel processing techniques
and the CUDA framework provide a considerable improvement i processing speed over
and above the performance improvement provided by the optinzations made. This is
a major milestone for the machine translation system of the 8SL project. Real-time
performance is key to the realization of an interactive sysem and is one of the key re-
quirements of the project. With the conclusion of this reseach, this crucial requirement
has been met.

Another important contribution made was a methodology which can be used to optimize
image processing algorithms. A detailed performance ana$js of Achmed's upper body
pose recognition and estimation system was carried out to dermine potential sources of
delay in the algorithm. The methodology of this analysis canbe used as a guideline by
other researchers attempting to analyze similar algorithns. The results of the analysis
can also serve as an invaluable source of information when t@mpting to carry out a
further optimization of Achmed's algorithm.

Another signi cant contribution made was an optimized upper body pose recognition
and estimation system with enhanced accuracy and procesgjspeed. The results of the
analysis were used to identify potential improvements to the algorithm. This resulted in
the creation of optimized face detection, skin detection, lackground subtraction and re-
size components. These components provide substantial ireases to both the processing
speed and accuracy.

86
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7.1 Directions for Future Work

Three directions for future work are provided in the following three subsections.

7.1.1 Porting the Existing SASL Systems to the GPU

The methodology used in this research can be used to increasiee processing speed of
the existing SASL systems discussed in Chaptet. This can be used to provide su cient
processing power for the integration of the these systems ia one fully- edged SASL
recognition system.

7.1.2 Utilizing Multiple GPUs

Multiple GPUs can be combined to further increase the paralél processing capabilities of
the CUDA framework. This can allow the system to make use of moe computationally
intensive algorithms and provide a general increase in spde

7.1.3 Investigating the OpenCL Framework

OpenCL has recently developed partial support for OpenCV. This is expected to reach
a level of maturity in the near future. The system can be portad to run on OpenCL. The
performance of the CUDA and OpenCL frameworks can be comparkin this regard.

7.2 Concluding Remarks

The researcher has gained an enormous amount of experienderdughout the period of
research. Conducting this research served as a reinforcemteof the vast capabilities of
computer vision. It is hoped that the knowledge passed on inhis research will serve as
a foundation and aid to further advancements within the SASL project.
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Bin Width True Positive Count (%)

Subject 1  Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Mea n Std Dev
4 96 89 96 99 81 98 93 6
8 92 85 91 95 76 98 90 7
12 80 80 65 83 65 97 78 11
16 60 60 59 63 56 88 64 11
20 31 57 52 50 45 90 54 18
24 41 51 46 44 36 87 51 17
28 31 45 39 30 33 86 44 19
32 28 37 33 29 32 81 40 19

Table A.1: True positive percentages for skin detection at various binwidths.
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Bin Width True Negative Count (%)

Subject 1  Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Mea n Std Dev
4 15 15 15 15 15 15 15 0.12
8 92 91 91 91 91 91 91 0.33
12 96 96 96 96 96 96 96 0.18
16 98 98 98 98 97 98 98 0.11
20 98 98 98 98 98 98 98 0.12
24 98 98 98 98 98 98 98 0.10
28 98 98 98 98 98 98 98 0.11
32 98 98 98 98 98 98 98 0.11

Table A.2: True negative percentages for skin detection at various birwidths.
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Component Test Subject Away Bye Crackers Curtains Dress Eat Le ft Light Love Right Run We Why Wide Average
Subject 1 8.11 9.68 8.06 9.50 9.24 8.24 9.00 9.40 897 1004 9.16 9.85 9.11 8.14 9.04
Subject 2 8.59 10.03 9.21 9.78 8.17 8.45 9.58 8.70 9.34 8.01 8.79 9.84 8.08 8.35 8.92
Subject 3 9.91 8.04 8.00 8.01 9.00 8.82 9.91 8.66 8.14 9.65 8.34 9.82 9.04 8.13 8.82
Face Detection Subject 4 9.55 9.16 9.25 9.63 8.54 8.05 9.04 9.41 8.97 8.93 9.97 9.66 9.77 8.28 9.16
Subject 5 9.16 9.74 9.91 9.34 8.34 10.00 8.63 9.95 8.87 8.55 8.84 8.78 9.49 9.33 9.21
Subject 6 8.95 8.36 9.66 9.06 8.22 9.98 9.55 8.46 9.49 9.99 8.24 8.35 8.89 9.00 9.01
Average 9.05 9.17 9.01 9.22 8.58 8.92 9.29 9.10 8.96 9.20 8.89 9.38 9.06 8.54 9.03
Subject 1 188.83 218.20  209.43 203.50 210.28 206.44 200.22 183.92 206.03 186.02 215.43 180.31 195.99 208.39  200.93
Subject 2 210.33 212.84 194.06 185.10 188.76 186.47 209.41 192.34 207.10 218.84 219.38 187.25 181.17 21991 200.93
Subject 3 210.23 191.75 205.17 219.05 189.85 194.50 202.45 180.03 180.84 182.57 183.94 206.86 188.59 219.38 196.80
Skin Detection Subject 4 207.17 204.58 207.67 197.40 197.31 181.63 202.51 206.07 188.10 191.82 218.41 21520 190.56 217.69 201.86
Subject 5 182.35 191.72 217.50 212.58 203.48 202.56 211.53 213.32 217.06 193.88 213.35 217.90 196.45 217.30 206.50
Subject 6 204.66 205.04 216.57 191.74 189.52 204.14 209.14 206.83 205.77 19155 192.80 213.87 203.36 191.11 201.86
Average 200.60 204.02 208.40 201.56 196.53 195.96 205.88 197.08 200.82 194.11 207.22 203.57 192.69 212.29 201.48
Subject 1 26.62 27.52 28.59 29.18 26.18 28.62 25.66 28.15 29.71 28.73 27.66 27.83 25.80 27.38 27.69
Subject 2 28.01 29.70 26.03 28.42 2794 29.05 29.75 27.75 28.42 2522 2647 2594 27.64 28.50 27.77
Subject 3 28.28 28.44 25.52 29.91 2597 29.11 29.08 27.15 27.73 29.74 2530 27.44 28.47 27.96 27.86
Background Subtraction Subject 4 25.28 29.27 25.34 28.29 28.97 26.36 26.71 2691 2541 2645 29.66 28.84 26.67 26.13 27.16
Subject 5 29.77 2931 29.63 28.06 2775 2515 2796 28.72 29.27 27.04 2587 27.00 26.78 26.16 27.75
Subject 6 29.44 2525 29.12 29.72 29.52 29.46 28.01 2849 2582 29.71 2540 26.23 26.16 25.05 27.67
Average 2790 28.25 27.37 28.93 2772 2796 27.86 27.86 27.73 27.82 2672 2721 26.92 26.86 27.65
Subject 1 6157 58.01 59.66 57.57 63.47 5756 6254 55.05 56.70 57.30 57.04 59.79 6354 58.87 59.19
Subject 2 59.31 58.49 59.38 59.61 62.60 64.67 59.31 56.15 60.24 60.50 63.18 58.78 57.73 63.66 60.26
Subject 3 61.04 59.06 57.53 57.61 62.07 62.19 60.18 60.54 64.75 57.72 60.59 56.45 60.02 62.63 60.17
Morphological Operations Subject 4 61.24 58.56 56.50 55.55 62.05 60.89 60.16 59.65 60.55 64.47 60.80 55.79 59.97 58.99 59.65
Subject 5 59.57 62.70 57.64 55.61 56.77 60.17 58.22 63.84 57.36 6340 59.38 57.11 56.12 64.97 59.49
Subject 6 58.56 61.14 62.60 64.80 6470 64.11 5535 61.75 59.99 60.50 56.40 55.54 59.97 62.20 60.54
Average 60.21  59.66 58.89 58.46 61.94 61.60 59.29 59.50 59.93 60.65 59.57 57.24 59.56 61.89 59.88
Subject 1 101.29 102.72 98.26 105.29 107.49 106.55 105.59 99.39 108.08 103.25 107.62 98.92 98.90 102.05 103.24
Subject 2 103.87 98.47 107.88 98.31 108.14 108.64 104.62 98.44 103.99 101.43 98.93 10290 99.32 107.45 103.03
Subject 3 105.23 100.39 105.40 108.53 105.11 105.66 104.82 103.60 103.21 101.41 104.99 102.30 106.66 103.61 104.35
Resize Subject 4 103.22 107.56 107.66 98.09 108.03 106.54 98.40 107.17 106.18 105.02 107.61 101.17 108.45 108.54  105.26
Subject 5 106.07 98.77 106.99 102.31 101.16 103.39 101.83 108.27 100.06 108.65 102.86 105.27 101.05 98.85 103.25
Subject 6 98.57 98.71 104.46 103.79 108.27 103.11 103.87 107.31 100.65 104.27 105.48 108.83 100.29 104.09 103.69
Average 103.04 101.10 105.11 102.72 106.37 105.65 103.19 104.03 103.70 104.00 104.58 103.23 102.45 104.10 103.80
Table A.3: The average FPS for OrigCPU of each component, per subject, gr sign.
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Component Test Subject  Away Bye Crackers Curtains Dress Eat Le ft Light Love  Right Run We Why  Wide Average
Subject 1 102.70 105.84  102.02 106.93  105.81 100.88 10535 102.82 10857 10253 106.44 101.12 10238 10589  104.23
Subject 2 109.13 105.60  101.13 101.84 10555 100.04 106.80 108.12 10852 102.64 100.74 101.01 103.60 104.09  104.20
Subject 3 104.48 109.53  100.80 107.18 10527 102.82 104.01 100.98 103.70 109.36 103.80 102.17 101.79 100.14  104.00
Face Detection Subject 4 10329 104.17  106.02 102.32  109.76 107.15 104.17 10522 107.19 100.87 10323 10561 10351 103.97  104.75
Subject 5 106.61 107.11  108.06 101.00 10654 108.86 108.17 10171 10158 102.08 102.69 10528 101.33 106.49  104.82
Subject 6 107.45 103.12  106.63 100.64 10729 10255 102.97 106.95 109.70 107.13 102.07 106.79 108.00 10530  105.47
Average 105.61 105.89  104.11 103.32  106.70 10372 10524 10430 10654 104.10 103.16 103.66 103.43 10431  104.58
Subject 1 214.43 19052  195.88 185.16 ~ 193.87 207.82 209.99 216.02 21370 190.36 191.84 20353 210.39 21311  202.62
Subject 2 191.13 196.28  190.05 180.99  182.94 19873 21451 189.91 19320 186.10 199.89 203.63 198.81 200.02  194.73
Subject 3 197.22  191.98  194.92 181.55 20251 201.80 186.70 216.38 189.52 216.69 21229 18311 217.05 214.13  200.42
Skin Detection Subject 4 206.65 207.34  207.14 207.78 18352 217.18 20877 186.46 19581 203.18 196.37 209.02 209.28 216.26  203.91
Subject 5 19254 187.99  196.18 199.76  199.97 20210 201.31 18237 18379 208.01 21875 193.31 204.60 210.95  198.69
Subject 6 196.43 201.55  204.98 198.97 18879 192.01 21075 202.32 209.09 199.42 19878 204.91 18250 205.14  199.69
Average 199.73 19594  198.19 192.37 19193 20327 20534 19891 19752 200.63 202.99 19958 203.77 209.93  200.01
Subject 1 37127 390.40  364.97 364.09 37582 369.01 361.22 37216 37352 38208 37220 383.86 38854 353.35  373.03
Subject 2 382.34 365.12  388.78 366.42  364.42 389.41 37463 368.02 388.98 37245 384.08 355.07 386.05 37255  375.59
Subject 3 362.39 390.82  375.34 383.66  390.22 390.31 356.74 375.04 368.32 367.97 356.20 350.84 359.04 37840  371.81
Background Subtraction Subject 4 38470 35658  381.75 376.04 37170 379.53 35146 386.12 377.94 376.09 363.14 37592 357.54 356.22  371.05
Subject 5 380.99 35260  378.77 35238 35241 363.11 386.04 351.63 36242 351.78 376.67 380.74 369.75 382.87  367.30
Subject 6 38158 378.80  370.27 37528  385.38 361.02 360.32 366.08 390.55 361.79 361.20 377.48 387.88 374.34 373.71
Average 377.21 37238  376.65 369.64  373.33 37540 365.07 369.84 37695 368.69 368.92 370.65 37480 369.62  372.08
Subject 1 61.58  63.00 59.68 55.12 64.03 6385 6449 6370 5942 5800 57.39 6181 60.60  56.46 60.65
Subject 2 62.26  63.20 58.51 61.33 56.13 6485 5823 6132 5653 5511 5674 6131 5925  50.89 59.62
Subject 3 64.68  55.71 55.38 61.26 63.71  60.06 6138 6274 5891 60.87 6144 63.33 6387  63.83 61.23
Morphological Operations ~ Subject 4 60.14  59.47 55.28 57.40 57.67 5879  63.73 5880 5864 56.96 5512  60.18 57.07  56.87 58.29
Subject 5 56.48  61.32 61.76 56.16 62.02 6214 6242 6073 5720 5880 5847 6111 6467  64.91 60.59
Subject 6 59.44  63.54 63.73 64.58 58.01 6401 5698 60.68 57.81 5571  64.48 6145 57.67  64.60 60.90
Average 60.76  61.04 59.06 59.31 60.26 6228 6120 6133 58.09 5757 5894 6153 6052  61.09 60.21
Subject 1~ 1685.24 1694.03 1676.64  1677.66 167225 1707.32 167151 1685.32 168565 1671.52 1703.38 1694.79 1689.95 1685.02 1685.74
Subject2  1675.11 1692.37 1696.52  1684.08 1696.37 1674.04 1707.02 1706.22 1703.79 1690.57 1688.13 1694.83 1694.28 1684.97 1692.02
Subject 3 1676.00 1680.20 1705.97  1691.24 1704.24 1672.62 1698.90 1706.49 1709.94 1700.41 1681.81 168559 1701.93 167519 1692.18
Resize Subject 4  1670.38 1681.89 1690.21  1675.49 1704.25 1676.72 1689.57 1690.62 1680.77 1686.59 1686.84 1674.56 1707.16 1704.97 1687.14
Subject5  1699.39 1691.45 1679.94 170539 1701.65 167591 1686.63 1695.89 1678.53 167553 1692.37 1678.46 1705.94 1704.18 1690.80
Subject 6  1694.05 1697.87 1709.37  1694.43 1709.76 1689.58 1699.92 1704.01 1696.30 1679.49 1684.63 1707.07 1696.08 1701.46 1697.43
Average 1683.36 1689.63 1693.11  1688.05 1698.09 1682.70 169226 1698.09 169250 1684.02 1689.53 1689.22 1699.23 1692.63 1690.89
Table A.4: The average FPS for ModCPU of each component, per subject, pesign.

s)Nsay 1s8L [euonippy ‘v xipuaddy

T6



Sign Away Bye Crackers Curtains Dress Eat Left Light Love Right R un  We Why Wide Total
Subject 1 128 103 92 134 90 90 113 117 86 104 86 81 68 102 1394
Subject 2 151 68 89 112 91 57 98 98 73 64 86 91 68 92 1238
Subject 3 124 99 67 92 99 93 69 108 54 93 71 54 91 81 1195
Subject 4 157 84 7 75 90 69 56 91 62 61 92 79 56 52 1101
Subject 5 114 101 116 92 86 156 56 65 64 78 65 63 52 84 1192
Subject 6 167 123 94 102 103 90 66 104 55 61 84 75 62 68 1254
Subject 7 93 97 78 99 76 103 62 96 58 56 73 53 77 61 1082
Subject 8 51 128 103 103 104 141 96 96 57 68 105 92 75 75 1294
Subject 9 74 97 77 138 64 89 65 63 57 79 92 64 61 76 1096
Subject 10 157 73 73 87 94 88 58 84 54 67 88 70 71 71 1135
Subject 11 76 81 94 61 61 55 54 52 65 52 64 65 63 160 1003
Subject 12 107 144 73 133 113 115 88 53 54 54 74 54 63 56 1181
Subject 13 103 160 81 94 91 119 53 74 65 60 83 63 73 59 1178
Subject 14 167 106 83 101 86 101 101 101 51 84 92 53 53 135 1314
Subject 15 98 118 94 90 89 78 67 56 96 63 82 73 74 96 1174
Subject 16 145 59 72 78 105 138 76 69 57 64 86 56 73 82 1160
Subject 17 137 61 93 58 61 75 92 93 63 54 55 57 76 99 1074
Subject 18 134 83 78 62 76 65 93 51 94 54 64 75 84 82 1095
Subject 19 93 70 67 55 56 79 95 96 96 73 54 74 73 52 1033
Subject 20 53 90 63 63 70 61 96 58 96 66 80 74 68 98 1036
Subject 21 145 82 79 105 86 77 63 71 68 53 100 67 51 69 1116
Subject 22 129 86 61 71 71 75 91 59 63 63 61 73 85 68 1056
Subject 23 96 74 62 74 75 74 54 52 62 63 66 52 89 92 985
Subject 24 84 96 57 76 88 95 58 77 56 95 69 61 63 53 1028
Subject 25 88 67 127 64 58 57 75 51 62 73 51 52 76 95 996
Subject 26 75 64 126 59 59 141 56 67 67 52 72 57 59 99 1053
Subject 27 106 75 73 67 68 62 62 67 53 80 56 75 58 57 959
Subject 28 75 75 76 69 69 55 52 68 78 74 73 51 58 98 971
Subject 29 73 93 93 63 61 109 99 78 76 57 52 52 57 66 1029
Subject 30 58 58 98 117 79 107 99 78 65 161 69 54 59 63 1165
Total 3258 2715 2516 2594 2419 2714 2263 2293 2007 2126 2245 1960 2036 2441 33587

Table A.5: Frames per sign video, per subject.
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Sign Away Bye Crackers Curtains Dress Eat Left Light Love Right R un  We Why Wide Total
Subject 1 120 90 80 120 78 85 113 113 86 98 67 69 61 90 1270
Subject 2 143 63 74 104 85 53 78 86 72 57 70 81 54 75 1093
Subject 3 124 86 56 75 91 81 69 101 54 79 67 49 72 68 1072
Subject 4 139 79 65 60 78 60 51 78 58 46 74 70 53 48 961
Subject 5 101 93 93 83 78 142 49 59 63 69 49 59 44 72 1053
Subject 6 135 105 70 96 96 76 62 97 47 48 71 68 54 60 1086
Subject 7 84 80 69 89 71 91 59 84 56 54 66 45 68 61 977
Subject 8 44 106 87 77 93 119 78 89 50 63 85 78 58 68 1095
Subject 9 65 81 59 114 56 81 64 58 57 64 82 60 58 57 955
Subject 10 132 62 58 70 87 77 47 73 49 51 78 68 50 57 961
Subject 11 70 76 68 57 54 53 46 49 62 49 50 61 52 151 899
Subject 12 95 122 59 122 105 93 79 48 50 45 70 42 51 53 1034
Subject 13 97 148 69 88 75 101 47 65 64 57 74 55 65 48 1052
Subject 14 152 91 59 78 76 89 83 99 50 69 71 53 42 117 1128
Subject 15 91 95 66 77 80 76 60 55 82 49 68 56 64 83 1004
Subject 16 138 54 59 73 85 121 71 65 51 54 76 44 59 66 1016
Subject 17 137 52 71 45 55 75 83 93 54 43 46 41 59 74 931
Subject 18 134 79 55 53 63 59 81 46 93 41 55 67 60 68 955
Subject 19 93 59 59 49 53 72 77 86 96 62 42 74 67 51 940
Subject 20 47 85 52 55 65 57 87 54 85 57 71 64 54 81 914
Subject 21 140 66 55 91 79 74 62 69 65 41 86 51 43 58 979
Subject 22 129 78 51 57 64 69 82 53 62 53 53 53 73 60 937
Subject 23 85 65 51 62 65 67 45 45 59 58 53 40 63 85 842
Subject 24 74 82 40 66 75 87 55 73 56 86 61 57 55 42 908
Subject 25 65 59 100 50 55 47 74 50 57 60 39 48 66 79 849
Subject 26 61 52 93 47 55 140 53 59 61 44 55 53 45 92 911
Subject 27 90 62 55 59 64 61 53 61 48 72 46 62 48 44 825
Subject 28 62 68 55 62 57 45 42 66 72 67 61 48 47 79 830
Subject 29 60 84 70 53 50 102 93 77 66 53 45 46 49 52 900
Subject 30 51 50 7 89 70 100 83 74 57 123 54 51 42 57 977
Total 2959 2371 1976 2222 2158 2451 2027 2127 1882 1809 1887 1711 1676 2098
Table A.6: Matches per sign video, per subject for Orig.
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Sign Away Bye Crackers Curtains Dress Eat Left Light Love Right R un Why Wide Total
Subject 1 120 90 80 120 78 85 113 110 86 100 70 70 65 102 1289
Subject 2 138 66 69 110 87 55 98 95 57 64 76 74 67 90 1146
Subject 3 124 99 54 92 94 93 69 97 54 93 69 54 91 81 1163
Subject 4 142 81 59 71 83 68 54 81 61 57 63 67 53 47 987
Subject 5 108 101 96 82 82 147 55 61 57 76 46 52 49 81 1092
Subject 6 151 121 74 92 103 85 64 99 48 56 72 62 60 65 1151
Subject 7 81 92 78 99 71 92 59 87 57 54 65 45 71 61 1012
Subject 8 48 127 80 99 104 125 89 94 51 68 91 74 72 75 1197
Subject 9 60 97 58 127 53 86 64 58 54 73 86 48 59 69 993
Subject 10 149 70 62 83 76 81 56 83 49 60 82 57 65 69 1042
Subject 11 69 77 73 60 49 51 51 47 53 46 52 57 58 149 892
Subject 12 107 144 56 133 94 110 88 53 44 54 56 44 60 56 1099
Subject 13 94 159 63 86 83 111 53 67 53 60 74 57 62 57 1078
Subject 14 152 102 69 97 75 89 101 99 44 84 75 44 50 134 1216
Subject 15 93 117 76 90 72 70 67 51 91 63 66 73 62 85 1077
Subject 16 138 59 61 78 97 138 76 69 56 64 61 54 70 82 1102
Subject 17 137 59 89 58 59 75 92 93 63 54 51 57 76 99 1062
Subject 18 134 79 72 61 76 65 93 51 94 54 63 75 84 80 1080
Subject 19 93 70 67 55 56 79 95 96 96 73 51 74 73 52 1030
Subject 20 47 89 62 63 61 60 96 57 96 58 59 70 64 90 971
Subject 21 140 82 66 105 71 73 63 71 68 53 91 67 51 69 1070
Subject 22 129 86 53 69 69 74 91 59 63 63 45 71 85 66 1023
Subject 23 85 74 62 72 73 70 54 52 61 63 49 50 81 92 938
Subject 24 74 96 47 62 69 88 58 7 51 95 52 61 63 52 947
Subject 25 65 67 107 63 56 44 75 51 62 71 38 52 76 95 922
Subject 26 61 64 93 53 42 141 56 59 67 47 66 57 52 93 952
Subject 27 76 61 57 60 62 59 62 64 50 74 55 67 49 54 850
Subject 28 60 72 60 68 67 54 52 67 71 60 58 43 57 98 888
Subject 29 60 89 7 56 55 108 94 69 66 52 36 42 49 63 915
Subject 30 47 56 82 116 75 106 99 78 51 160 62 52 56 63 1104
Total 2982 2646 2101 2480 2193 2582 2237 2193 1875 2048 1879 1772 1930 2368 31267
Table A.7: Matches per sign video, per subject for Mod.
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