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Abstract. There are a lack of multi-modal biometric fusion guidelines
at the feature-level. This paper investigates face and fingerprint features
in the form of their strengths and weaknesses. This serves as a set of
guidelines to authors that are planning face and fingerprint feature-fusion
applications or aim to extend this into a general framework. The proposed
guidelines were applied to the face and fingerprint to achieve a 91.11%
recognition accuracy when using only a single training sample. Further-
more, an accuracy of 99.69% was achieved when using five training sam-
ples.
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1 Introduction

Biometrics is defined as the measurement and analysis of unique biological and
behavioural traits for human identification purposes [1]. Their widespread use
have introduced security risks posed by forgers [2]. Furthermore, real-world con-
ditions often result in degradation of the biometric data being modelled.

In a bid to counteract these real-world problems, multiple sources of bio-
metric information have been used to improve the security, recognition accuracy
and versatility of a biometric system. Multi-modal biometrics can also be used
to solve non-universality and insufficient population coverage in well-planned
applications [3].

Early use of multi-modal biometrics adopted the matching score level fusion
approach. Later, the feature-level approach was shown to outperform the match-
ing score level [4]. Feature-level fusion integrates feature sets corresponding to
two or more biometric modalities. The widely used matching score level fusion
does not utilize the rich discriminatory information available at the feature-level.
The matching score level has been thoroughly reviewed and the results used to
construct fusion frameworks [5]. These frameworks provide future research and
applications a foundation on which to systematically implement multi-modal
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systems in the real-world. Feature-level fusion literature lack these frameworks,
as it is a lesser studied problem. At present, the guideline used during feature-
level fusion is limited to feature set compatibility – uncorrelated feature sets
are to be used among different modalities and correlated feature sets among
multiple samples of the same modality [6]. Biometric modalities, represented by
an image, are independent and complementary. Based on the feature set com-
patibility guideline, the application of the same feature transformation method
on different modalities can yield a very efficient multi-modal biometric system
[5]. Fusion is often applied after transforming the feature space using linear or
non-linear methods. [2].

In this paper, different feature selection and transformation methods are
applied to the face and fingerprint. The resulting feature sets are expected to
produce an improved recognition performance compared with the two individ-
ual modalities. The scope includes the use of different sized datasets and varying
the number of training samples from one to five during data modelling. The ex-
perimental results are subsequently used to determine feature-fusion guidelines,
relevant to the face and fingerprint, based on the type of data acquired. The
contribution of this paper are these guidelines, which serve as the foundation of
a general feature-fusion framework that can be constructed in future.

The rest of the paper is organized as follows: Sections 2 and 3 discuss qual-
ity enhancing and feature selection techniques, respectively. Three classifiers are
explained in Section 4. Section 5 presents the related studies found in the liter-
ature. Sections 6 and 7 discuss the construction and application of the face and
fingerprint feature-fusion guidelines, respectively. The experimental analyses and
results are discussed in Section 8. Section 9 concludes the paper and discusses
future work.

2 Quality Enhancement

Quality enhancement is used to recover the legibility of bad input data. This is
particular to contours and pores in face images, and similarly the case for ridges
and valleys in fingerprint images [7].

The biometric recognition process is often initiated by enhancing the quality
of the input image [8–11]. This section discusses important image pre-processing
techniques used on the biometric modalities in this paper.

2.1 Non-Local Denoising

Buades et al. [12] present an image denoising algorithm, called non-local means
filtering (NL-means), described as neither local nor global. NL-means differs
from typical neighbourhood filters as it compares the geometrical configuration
in an entire neighborhood instead of a single greyscale pixel of one neighbour-
hood corresponding to another. NL-means preserves the edges of an image. This
is important in fingerprint applications as ridges and valleys are key features.
However, high filter strength and large neighbourhood size removes fine texture.
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2.2 Pixel Normalization

Using this technique, pixel values are set to a constant mean and variance to
reduce inconsistencies in lighting and contrast. This is essential for both face
and fingerprint images as multiple samples are often captured under different
conditions.

2.3 Histogram Equalization

Histogram Equalization effectively adjusts contrast intensities to an even amount
based on the most frequent intensity values across an image histogram [8]. This
uniform distribution is achieved by applying a non-linear transformation result-
ing in a minor side-effect on the histogram shape. This often produces better
results than pixel normalization, but should be avoided in most histogram-based
matching methods.

3 Feature Selection

Feature selection optimizes an objective function based on a requirement of
specific features. The objective function reduces feature space by removing un-
wanted features. The remaining features are highly representative of the under-
lying image class [8]. The following subsections discuss the face and fingerprint
features.

3.1 Local and Global Features

The texture pattern of a fingerprint contains richer information than singular
points and minutiae [13]. The ridges and valleys that form the texture pattern
are known as global features. Global features are effective in biometric fusion
at the feature-level, but require registered points for alignment. Local features
consist of these registration points known as minutiae and singular points.

Texture patterns, consisting of contours and pores can similarly be used as
global features in face images. The local features are the coordinates of the eyes,
nose and mouth. These local features are used to align global features in a similar
way to fingerprints.

3.2 Core Detection and Region of Interest

The core point in a fingerprint image is often defined as the sharpest concave
ridge curvature [14]. It is especially useful as a reference point during image
registration. It can be used to define a regions of interest (ROI), which minimizes
the discrepancy of stretch and alignment differences within same fingerprint
classes.

Poincaré index is an orientation field based core detection algorithm[14].
It works well in good quality fingerprint images, but fails to correctly localize
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reference points in poor quality fingerprints with cracks, scars or poor ridge
and valley contrast. However, since it does not rely on fine grain texture, NL-
means can be used to enhance ridge and valley contrast before determining the
orientation field.

Haar cascading is a popular method for detecting local facial features [15].
Similarly, local features in face images are used to create a border around the
face, centred at the nose. Typical changes to the face such as hair, ears and neck
are thus provided for.

3.3 Laplacian of Gaussian Filtering

A Laplacian of Gaussian (LOG) filter increases the dominant spectral compo-
nents while attenuating the weak components [15, 16]. However, the LOG filter
can further degrade the recognition accuracy of badly registered images because
the overlap between dominant spectral components of the training and testing
images becomes sparse.

3.4 Gabor Filter

A Gabor wavelet is a commonly used method of frequency filtering. This filter is
constructed using a special short-time Fourier transform by modulating a two-
dimensional sine wave at a particular frequency and orientation with a Gaussian
envelope.

The sine waves of the ridges in the fingerprint vary at a slow to medium rate
in a local constant orientation. Therefore, it is tuned to specific orientations and
frequencies in the bandpass range, isolating undesired noise while preserving the
structure of the fingerprint. Similar effects can be achieve when applied to the
face, based on the structure of contours. Thus, an effective bandpass filter is
constructed when utilizing the frequency and orientation selective properties of
a Gabor filter according to the modality [17].

4 Feature Transformation and Classification

Image classification algorithms aim to exploit highly discriminative features.
These algorithms often transform a feature vector to another vector space. The
following image classification algorithms are considered.

4.1 Eigen

Principal component analysis (PCA) is used in this Eigen classifier to maximize
the total variance in data based on linear combination of features. Eigenvectors
are the decomposition of features vectors into key components known as princi-
pal components, which can then be reconstructed into an approximation of the
original image.
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The largest variance in data is contained within the first few principal compo-
nents. These are the key features that are modelled into classes. A training and
testing model are compared based on the distances between eigenvalues during
matching.

Given N number of sample images xk the total scatter matrix is defined as
[18]:

St =

N∑
k=1

(xk − µ)(xk − µ)T ,

where m ∈ Rn is the mean image obtained from the samples.

4.2 Fisher

The total scatter matrix used in Eigen lacks some discriminative information at
an inter-class level. On the other hand, linear discriminant analysis (LDA) per-
forms extra class-specific dimensionality reduction by considering the between-
class and within-class scatter matrix.

Fisher learns a class-specific transformation matrix, which can lead to incon-
sistent data in dynamic lighting conditions. Fisher generally requires more train-
ing data than Eigen in non-ideal conditions. However, an advantage of Fisher
is lower training and testing time and reduced dimensionality compared with
Eigen.

Given C number of classes, the between-class scatter matrix is defined as
[18]:

Sb =

C∑
i=1

Nk(µk − µ)(xk − µ)T

and the within-class scatter matrix is defined as:

Sw =

C∑
i=1

∑
xk∈Xi

(xk − µ)(xk − µ)T .

Where C − 1 is the maximum number of non-zero generalized eigenvalues,
which leads to extra dimensionality reduction.

4.3 Local Binary Patterns Histogram

The local binary patterns histogram (LBPH) is a robust texture feature descrip-
tor. It uses a local binary pattern (LBP) operator that compares the centre pixel
value to a set size of neighbouring pixels.

A special LBP operator called extended LBP (ELBP) is used in this work.
The neighbourhood is extended to include interpolated pixels, based on a cir-
cular mask, allowing for fine grain texture to be captured. Spatially enhanced
histogram matching is used to improve partial matching and automatic pixel
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normalization at a pixel level, circular neighbourhood level, and image level.
This addresses the shortcomings of Eigen and Fisher in terms of illumination,
scale and misalignment[19]. ELBP can also be used as a feature selector without
the spatially enhanced histogram.

The spatially enhanced histogram trains a significantly smaller model and
produces it faster than the former two classifiers. Furthermore, the training time
is independent of the resolution of the images. Given m circular neighbourhoods,
their corresponding spatially enhanced histograms have size m × n, where n is
the length of a single histogram.

5 Related Studies

Karki and Selvi [20] proposed a multi-modal biometric system designed to fuse
the face, fingerprint and offline signature in parallel at the feature-level. A feature
vector is concatenated and stored in a database by using parallel fusion. The
biometric traits of an individual are recorded separately during data acquisition,
but required feature selection and transformation techniques are applied to the
modalities in parallel. The SVM classifier is used for matching.

Texture features are extracted by a Curvelet transform with a third level low-
low subband from each trait. The low level coefficients from the subband of each
trait are compatible and each form a feature vector. The three feature vectors
are concatenated (Fc). Five feature reduction methods are used to produce the
reduced feature vectors, that is, feature averaging (Fa), PCA (FPCA), PCA
on individual traits (Fp), statistical moment features without fusion (Fm) and
feature concatenation by extracting significant coefficients only (Fs). An SVM
with a polynomial kernel of order 2 and parameter C set to 10 is the selected
classifier.

Fingerprint, offline signature, and face samples of 100 users were captured to
form a database, named ECMSRIT. PCA feature reduction performed on the
concatenated feature vector of the ECMSRIT data produced the best equal error
rate (EER) of 5.32%. This result was followed by the following feature vectors:
Fa, Fp, Fc, Fm and Fs with an EER of 12.00%, 15.33%, 19.31%, 20.54% and
23.54%, respectively. The use of Curvelet transforms produced feature vectors
that were robust to rotation of up to 10◦.

Sharma and Kaur [21] designed a multi-modal system by integrating the face,
fingerprint and palmprint at the feature-level, similar to Karki and Selvi’s work,
but without the use of the Curvelet transform. The feature vectors are extracted
independently using PCA followed by their concatenation before classification
using a multiclass SVM. The performance of the multiclass SVM classifier is
compared to an artificial neural network (ANN).

PCA reduction is used to reduce the search space for the SVM. The SVM
uses the radial basis function (RBF) kernel. The number of hyperparameters
affecting the complexity of the trained model is less in the RBF kernel than the
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other kernels. This gives the RBF kernel an advantage over the other kernels
because the dimensionality of the fused feature vector is often too high.

The fingerprint images were obtained from the DB3 (UPEK) database; face
images collected by Markus Weber at California Institute of Technology and
palm images were obtained from the CASIA palmprint database. A pseudo
dataset was created containing 10 individuals by combining the separate datasets.
Five training and testing images were used per individual. The multi-modal sys-
tem achieved a false acceptance rate (FAR) of 4% and a false rejection rate
(FRR) of 6% on the dataset. The SVM significantly outperformed the ANN,
but the details were not provided in the study.

Yao et al. [22] compared four PCA-based face and palmprint feature fusion
algorithms. The proposed method filters EigenFaces and EigenPalms with a
Gabor filter followed by weighted concatenation of the resulting feature vectors.
The proposed system was designed to produce high accuracy with only a single
training sample.

The AR face database and a palmprint database provided by Hong Kong
Polytechnic University were used. The datasets consisted of 20 images per 189
individuals with a resolution of 60×60 in both cases. Fused datasets were created
using parallel fusion. The highest genuine acceptance rate (GAR) of 95% was
achieved with six training samples, while 91% GAR was achieved with only a
single training sample.

6 Setting up the Guidelines

This section determines the feature-fusion guidelines that are relevant to the face
and fingerprint. The face and fingerprint datasets consist of various scenarios as
described in the following subsection.

6.1 Categories of Datasets

Pseudo multi-modal datasets, consisting of 40 individuals, were formed by pair-
ing SDUMLA Fingerprint right index fingers [23] with ORL Face [24] and SDUMLA
Fingerprint right middle fingers with Fei Face [25]. Fingerprint images organized
into three groups, consisting of partials with absent core points, poorly-defined
ridges and well-defined ridges. Face images were organized into two groups, con-
sisting of standard faces and faces that consisted of poses and props. The inter-
actions of image processing modules and classifiers, discussed in Sections 2 to 4,
were determined based on preliminary experiments conducted on the organized
pseudo multi-modal datasets.

6.2 Preliminary Experiments

General results across all datasets indicated LBPH to be the classifier most ro-
bust to misalignment, dynamic lighting and scale. Eigen and Fisher achieved
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recognition accuracies similar to that of LBPH for face and fingerprint images
consisting of standard faces and well-defined ridges, respectively. However, Eigen
and Fisher performed poorly in the remaining datasets, which can be attributed
to the high variance in data across multiple samples of face and fingerprint im-
ages contained within those datasets. Fisher, in particular, requires training and
testing images with well-aligned texture and has a significantly lower dimension-
ality than Eigen.

Typical parameters of ELBP are the one pixel radius and eight neighbour-
ing pixels. Consistent lighting and lower noise were achieved in the Eigen space
by multiplying the parameters by four. The results were conclusive across all
datasets. This reduced the variation in data across multiple samples of an in-
dividual. The ELBP operator outperformed the equalized histogram and pixel
normalization under different lighting conditions. However, pixel normalization
was applied to LBPH as histogram equalization caused negative effects on the
spatially enhanced histogram and the ELBP operator was already part of the
LBPH classifier. The best accuracies were achieved when applying the same fea-
ture transformation to the different modalities. This is based on the feature set
compatibility guideline and confirms the assertion by Raghavendra et al. [5].

NL-means filtering improved core detection in fingerprint datasets consisting
of poorly-defined ridges. The improved core detection resulted in a well-defined
ROI. Partials were catered for by applying LBPH in a sliding window and select-
ing the ROI that produced the best confidence score. The ROI that best defined
the pose and props face dataset made use of multiple Haar cascades to exclude
props such as scarfs and hats.

The LOG filter significantly improved the recognition accuracy of all the fused
datasets. It was particularly useful at lowering the data variance of multiple
samples of face and fingerprint images consisting of poses and poorly-defined
ridges, respectively.

The Gabor filter did not improve the accuracies of the fused datasets. More-
over, it reduced the accuracy of the Eigen and Fisher classifiers. It significantly
improved the recognition accuracy of non-partial fingerprint datasets and slightly
improved the recognition accuracy of all face datasets when using the LBPH
classifier. On the other hand, the LOG filter lowered the accuracy of the LBPH
classifier. Reducing the data variance by 1% in the Eigen space, followed by
reconstructing the image data, produced the best LBPH recognition accuracy
across all datasets.

Table 1 provides a summary of the proposed guidelines, based on the results
of these preliminary experiments. These guidelines are applied to a multi-modal
database in the next section. The rest of the proposed methodology is based on
the results of these preliminary tests. The best feature-fusion method, for the
given datasets, on average, is illustrated in Fig. 1 and discussed as follows.
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Table 1: Feature-Fusion Guidelines
Stage Name Advantage Disadvantage Suggested Use

Quality
Enhancement

Pixel Normalization Reduces in-
consistent
lighting.

Not very
effective for
big changes in
lighting.

All biometrics af-
fected by lighting.
The first step of
quality enhance-
ment.

Histogram Equaliza-
tion

Reduces in-
consistent
lighting.

Minor his-
togram
distortion.
Introduces
some noise.

Biometrics that are
affected by lighting.
Histogram-shape
invariant classifiers
such as Eigen and
Fisher.

NL-means filter Denoises and
preserves
edges.

Can remove
fine texture.

Use before Poincaré
index.

Feature Selection
LOG Filter Improved

feature dis-
crimination,
before trans-
forming to
the Eigen
space.

Requires con-
sistent light-
ing.

Remove noise in the
upper and lower fre-
quencies before fu-
sion.

Gabor Filter Improved fea-
ture discrim-
ination, espe-
cially for fin-
gerprints.

Requires tun-
ing per appli-
cation.

Adjust frequencies at
a specific orientation
and scale. Classifiers
such as LBPH.

ELBP Operator Minimizes
inconsistent
lighting.

Introduces
noise.

Biometrics that are
affected by lighting.
Classifiers such as
Eigen and Fisher.

Feature
Transformation and
Classification

Eigen Classifier LOG and
ELBP sup-
plement this
classifier.

Slow training.
High dimen-
sionality.

Small image regions.
Useful for finger-
prints and fused
datasets.

Fisher Classifier LOG and
ELBP sup-
plement this
classifier. Low
dimensional-
ity.

Requires good
training data.

When Eigen dimen-
sionality is too high.

LBPH Classifier Works well on
faces. Very ro-
bust.

Lowest accu-
racy after fea-
ture selection.

General purpose
classifier. Face im-
ages. Applications
with low storage
requirements.
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Fig. 1: Overview of Proposed Methodology.



An Investigation of Face and Fingerprint Feature-Fusion Guidelines 11

7 Applying the Guidelines

The following list refers to Fig. 1 and details the subsequent evaluation of the
results.

1. The SDUMLA multi-modal database [23], consisting of 106 individuals, was
used in the final experiments discussed in Section 8. The acquired data as-
sumed the following form: Eight samples of the left thumbprint were selected
from the fingerprint images consisting of partials with absent core points,
poorly-defined ridges and well-defined ridges. The eight samples of frontal
faces selected from the face images consisted of different poses and props –
normal, smile, frown, surprise, look down, shut eyes, hat and glasses. The
number of training samples were varied from one to five and the rest were
used for testing. To the best of my knowledge there are no studies that fuse
face and fingerprint data acquired from the SDUMLA multi-modal database.

2. The fingerprint and face datasets were automatically cropped to 75× 75 us-
ing Poincaré index and multiple Haar cascades, respectively. NL-means was
used to remove noise before the Poincaré index algorithm was performed.
The fingerprint was cropped around the core point to reduce the amount
of stretch caused by inconsistent fingerprint capturing. The Haar cascades
detected the face, eyes, nose and mouth as outlined in Fig. 1. The outlining
was used to remove or reduce partial occlusions that affect face recognition.

3. The enhanced face and fingerprint feature vectors are combined using serial
vector fusion, known as column concatenation.

4. The three classifiers divide the fused dataset into classes to create three
baseline systems, as explained in Section 4. The baseline Eigen, Fisher and
LBPH classifiers use histogram equalization and pixel normalization. The
following feature selection techniques are applied to compare many multi-
modal biometric recognition systems: Eigen and Fisher are used to classify
combinations of the LOG and ELBP operator and PCA reduction is applied
before using the LBPH classifier.

8 Experimental Analysis and Results

The following suffixes identify a feature-fusion scheme: Histogram equalization is
a baseline system, henceforth, referred to as Eh; LOG is, henceforth, referred to
as L; Extended LBP is, henceforth, referred to as LBP; Extended LBP followed
by LOG is, henceforth, referred to as LBPL; LOG followed by Extended LBP
is, henceforth, referred to as LLBP; and PCA reduction is, henceforth, referred
to as PCA.

All recognition accuracies discussed in this section are measured at 0% FRR.
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The Eigen baseline fusion system always outperforms the face and fingerprint
as illustrated in Fig. 2. LBPL performs the best for one training sample with an
accuracy of 90.84% and LLBP achieves an accuracy of 99.69% with five training
samples.

The Fisher classifier performs similarly to Eigen, but with a significantly
reduced accuracy when using two training samples as shown in Fig. 3. This is
attributed to a low overlap of the remaining principal components in the two
samples caused by the huge reduction in dimensionality.

The LBPH baseline fusion system produces a lower accuracy than the face
when using three training samples as illustrated in Fig. 4. Moreover, LBPH is
a very good face texture classifier. LBPH has a poor response to the image
processing modules described in the bottom half of Section 3. However, PCA
reduction improves the recognition accuracy by 3% on average.

The ELBP operator was successfully used together with the LOG filter
to significantly improve feature discrimination in the Eigen space. EigenLLBP
achieved the lowest EER of all the fusion schemes when using five training sam-
ples, at 0.31% as seen in Fig. 5. Furthermore, it should be noted that this fusion
scheme shows no increase in FAR after the EER point. EhL and LBP individually
improved the accuracies over the baseline, but only the results of their combi-
nations are included in this paper. LBPL achieved the best average recognition
accuracy across the varied number of training samples. The results demonstrate
the application of the proposed guidelines in this paper. There are no exper-
iments that fuse the face and fingerprint datasets contained in the SDUMLA
multi-modal database.

9 Conclusion and Future Work

A comparison was performed on fingerprints, faces and their fused dataset using
three baseline classifiers. The comparison was extended by combining a modified
ELBP operator and a LOG filter. Additionally, principal components were re-
moved from the LBPH training and testing images. The LBPH classifier achieved
the best accuracy in the baseline systems and was robust to misalignment, dy-
namic lighting and scaling. The Eigen and Fisher classifiers yielded the best
accuracies when combining the strengths of ELBP and LOG. Feature-level fu-
sion research often makes use of well-known image processing and classification
techniques without reasoning. Analyzing and testing many of these techniques
to measure progress in the state-of-the-art is a non-trivial problem. Therefore,
the guidelines introduced in this paper is the first step to solving the generalized
feature-fusion framework problem.

In future, more combinations of biometric modalities and image processing
modules will be investigated with additional experimentation toward a general
multi-biometric feature-fusion framework. The framework will provide guidelines
and measure progress in multi-modal biometric systems at the feature-level.
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Fig. 2: Comparison of Eigen Methods

Fig. 3: Comparison of Fisher Methods

Fig. 4: Comparison of LBPH Methods.
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Fig. 5: Equal Error Rate.
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